BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 14647376)

  • 1. Microfluidic sorting in an optical lattice.
    MacDonald MP; Spalding GC; Dholakia K
    Nature; 2003 Nov; 426(6965):421-4. PubMed ID: 14647376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cytometry with a light touch: sorting microscopic matter with an optical lattice.
    MacDonald MP; Neale S; Paterson L; Richies A; Dholakia K; Spalding GC
    J Biol Regul Homeost Agents; 2004; 18(2):200-5. PubMed ID: 15471228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and colloidal separation using optical forces.
    Dholakia K; MacDonald MP; Zemánek P; Cizmár T
    Methods Cell Biol; 2007; 82():467-95. PubMed ID: 17586269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical differential mobility analyzer for micron size colloidal particles: theoretical approach.
    Kim SB; Song DK; Kim SS
    J Colloid Interface Sci; 2007 Jul; 311(1):102-9. PubMed ID: 17383672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured light spots projected by a Dammann grating with high power efficiency and uniformity for optical sorting.
    Sun X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2010 Oct; 49(28):5437-43. PubMed ID: 20885481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical scale purification of zirconia colloidal suspension using field programmed sedimentation field flow fractionation.
    Van-Quynh A; Blanchart P; Battu S; Clédat D; Cardot P
    J Chromatogr A; 2006 Mar; 1108(1):90-8. PubMed ID: 16445921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle size analyses of porous silica and hybrid silica chromatographic support particles. Comparison of flow/hyperlayer field-flow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering.
    Xu Y
    J Chromatogr A; 2008 May; 1191(1-2):40-56. PubMed ID: 18272159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering.
    Baalousha M; Kammer FV; Motelica-Heino M; Hilal HS; Le Coustumer P
    J Chromatogr A; 2006 Feb; 1104(1-2):272-81. PubMed ID: 16360663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic patterning of colloidal particles with optical landscapes.
    Williams SJ; Kumar A; Wereley ST
    Lab Chip; 2008 Nov; 8(11):1879-82. PubMed ID: 18941688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light at work: the use of optical forces for particle manipulation, sorting, and analysis.
    Jonás A; Zemánek P
    Electrophoresis; 2008 Dec; 29(24):4813-51. PubMed ID: 19130566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counter-propagating optical trapping system for size and refractive index measurement of microparticles.
    Flynn RA; Shao B; Chachisvilis M; Ozkan M; Esener SC
    Biosens Bioelectron; 2006 Jan; 21(7):1029-36. PubMed ID: 16368481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.
    Lattuada M; Olivo C; Gauer C; Storti G; Morbidelli M
    Langmuir; 2010 May; 26(10):7062-71. PubMed ID: 20143795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection.
    Claveranne-Lamolère C; Lespes G; Dubascoux S; Aupiais J; Pointurier F; Potin-Gautier M
    J Chromatogr A; 2009 Dec; 1216(52):9113-9. PubMed ID: 19766227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion.
    Usta OB; Alexeev A; Zhu G; Balazs AC
    ACS Nano; 2008 Mar; 2(3):471-6. PubMed ID: 19206572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.