BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 14647410)

  • 1. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction.
    Kuang C; Chen Y
    Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis.
    Imai Y; Kurokawa M; Izutsu K; Hangaishi A; Maki K; Ogawa S; Chiba S; Mitani K; Hirai H
    Oncogene; 2001 Jan; 20(1):88-96. PubMed ID: 11244507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4.
    Morén A; Itoh S; Moustakas A; Dijke P; Heldin CH
    Oncogene; 2000 Sep; 19(38):4396-404. PubMed ID: 10980615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines.
    Fink SP; Mikkola D; Willson JK; Markowitz S
    Oncogene; 2003 Mar; 22(9):1317-23. PubMed ID: 12618756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta.
    Ijichi H; Otsuka M; Tateishi K; Ikenoue T; Kawakami T; Kanai F; Arakawa Y; Seki N; Shimizu K; Miyazono K; Kawabe T; Omata M
    Oncogene; 2004 Feb; 23(5):1043-51. PubMed ID: 14762439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor-beta-induced growth inhibition in a Smad4 mutant colon adenoma cell line.
    Fink SP; Swinler SE; Lutterbaugh JD; Massagué J; Thiagalingam S; Kinzler KW; Vogelstein B; Willson JK; Markowitz S
    Cancer Res; 2001 Jan; 61(1):256-60. PubMed ID: 11196171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling.
    Imoto S; Sugiyama K; Sekine Y; Matsuda T
    FEBS Lett; 2005 May; 579(13):2853-62. PubMed ID: 15907489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif.
    Makkar P; Metpally RP; Sangadala S; Reddy BV
    J Mol Graph Model; 2009 Apr; 27(7):803-12. PubMed ID: 19157940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation between GATA4 and TGF-beta signaling regulates intestinal epithelial gene expression.
    Belaguli NS; Zhang M; Rigi M; Aftab M; Berger DH
    Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1520-33. PubMed ID: 17290010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1.
    Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M
    Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer.
    Wang D; Kanuma T; Mizunuma H; Takama F; Ibuki Y; Wake N; Mogi A; Shitara Y; Takenoshita S
    Cancer Res; 2000 Aug; 60(16):4507-12. PubMed ID: 10969799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.
    Peng B; Fleming JB; Breslin T; Grau AM; Fojioka S; Abbruzzese JL; Evans DB; Ayers D; Wathen K; Wu T; Robertson KD; Chiao PJ
    Clin Cancer Res; 2002 Nov; 8(11):3628-38. PubMed ID: 12429655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel dominant negative Smad2 mutation in a TGFbeta resistant human carcinoma cell line.
    Tsang KJ; Tsang D; Brown TN; Crowe DL
    Anticancer Res; 2002; 22(1A):13-9. PubMed ID: 12017275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3.
    Dennler S; Huet S; Gauthier JM
    Oncogene; 1999 Feb; 18(8):1643-8. PubMed ID: 10102636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor-beta.
    Jazag A; Ijichi H; Kanai F; Imamura T; Guleng B; Ohta M; Imamura J; Tanaka Y; Tateishi K; Ikenoue T; Kawakami T; Arakawa Y; Miyagishi M; Taira K; Kawabe T; Omata M
    Oncogene; 2005 Jan; 24(4):662-71. PubMed ID: 15592526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis.
    Jonckheere N; Perrais M; Mariette C; Batra SK; Aubert JP; Pigny P; Van Seuningen I
    Oncogene; 2004 Jul; 23(34):5729-38. PubMed ID: 15184872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of large-scale chromatin unfolding by Smad4.
    Yan J; Fang Y; Ding L; Zhu J; Lu Q; Huang C; Yang X; Ye Q
    Biochem Biophys Res Commun; 2004 Mar; 315(2):330-5. PubMed ID: 14766211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner.
    Pendaries V; Verrecchia F; Michel S; Mauviel A
    Oncogene; 2003 Nov; 22(50):8212-20. PubMed ID: 14603262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-beta/Smad3-mediated transcriptional activation.
    Cheng PL; Chang MH; Chao CH; Lee YH
    Oncogene; 2004 Oct; 23(47):7821-38. PubMed ID: 15334054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.