These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14647463)
1. Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression. Suzuki M; Yamada T; Kihara-Negishi F; Sakurai T; Oikawa T Oncogene; 2003 Nov; 22(54):8688-98. PubMed ID: 14647463 [TBL] [Abstract][Full Text] [Related]
2. In vivo complex formation of PU.1 with HDAC1 associated with PU.1-mediated transcriptional repression. Kihara-Negishi F; Yamamoto H; Suzuki M; Yamada T; Sakurai T; Tamura T; Oikawa T Oncogene; 2001 Sep; 20(42):6039-47. PubMed ID: 11593411 [TBL] [Abstract][Full Text] [Related]
3. Impaired repressor activity and biological functions of PU.1 in MEL cells induced by mutations in the acetylation motifs within the ETS domain. Kihara-Negishi F; Suzuki M; Yamada T; Sakurai T; Oikawa T Biochem Biophys Res Commun; 2005 Sep; 335(2):477-84. PubMed ID: 16098914 [TBL] [Abstract][Full Text] [Related]
4. Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Suzuki M; Yamada T; Kihara-Negishi F; Sakurai T; Hara E; Tenen DG; Hozumi N; Oikawa T Oncogene; 2006 Apr; 25(17):2477-88. PubMed ID: 16331260 [TBL] [Abstract][Full Text] [Related]
5. Interaction between the homeodomain protein HOXC13 and ETS family transcription factor PU.1 and its implication in the differentiation of murine erythroleukemia cells. Yamada T; Shimizu T; Suzuki M; Kihara-Negishi F; Nanashima N; Sakurai T; Fan Y; Akita M; Oikawa T; Tsuchida S Exp Cell Res; 2008 Feb; 314(4):847-58. PubMed ID: 18076876 [TBL] [Abstract][Full Text] [Related]
6. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Wu Y; Mehew JW; Heckman CA; Arcinas M; Boxer LM Oncogene; 2001 Jan; 20(2):240-51. PubMed ID: 11313951 [TBL] [Abstract][Full Text] [Related]
7. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Harikrishnan KN; Chow MZ; Baker EK; Pal S; Bassal S; Brasacchio D; Wang L; Craig JM; Jones PL; Sif S; El-Osta A Nat Genet; 2005 Mar; 37(3):254-64. PubMed ID: 15696166 [TBL] [Abstract][Full Text] [Related]
8. Myeloid transforming protein Evi1 interacts with methyl-CpG binding domain protein 3 and inhibits in vitro histone deacetylation by Mbd3/Mi-2/NuRD. Spensberger D; Vermeulen M; Le Guezennec X; Beekman R; van Hoven A; Bindels E; Stunnenberg H; Delwel R Biochemistry; 2008 Jun; 47(24):6418-26. PubMed ID: 18500823 [TBL] [Abstract][Full Text] [Related]
9. Prevention of PU.1-induced growth inhibition and apoptosis but not differentiation block in murine erythroleukemia cells by overexpression of CBP. Manabe N; Yamamoto H; Yamada T; Kihara-Negishi F; Hashimoto Y; Mochizuki M; Oikawa T Int J Oncol; 2003 Jun; 22(6):1345-50. PubMed ID: 12739003 [TBL] [Abstract][Full Text] [Related]
10. Leukemia-related transcription factor TEL accelerates differentiation of Friend erythroleukemia cells. Waga K; Nakamura Y; Maki K; Arai H; Yamagata T; Sasaki K; Kurokawa M; Hirai H; Mitani K Oncogene; 2003 Jan; 22(1):59-68. PubMed ID: 12527908 [TBL] [Abstract][Full Text] [Related]
11. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Wu Y; Zhang X; Salmon M; Zehner ZE Genes Cells; 2007 Aug; 12(8):905-18. PubMed ID: 17663720 [TBL] [Abstract][Full Text] [Related]
12. Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. McGhee L; Bryan J; Elliott L; Grimes HL; Kazanjian A; Davis JN; Meyers S J Cell Biochem; 2003 Aug; 89(5):1005-18. PubMed ID: 12874834 [TBL] [Abstract][Full Text] [Related]
14. In vivo repression of an erythroid-specific gene by distinct corepressor complexes. Rietveld LE; Caldenhoven E; Stunnenberg HG EMBO J; 2002 Mar; 21(6):1389-97. PubMed ID: 11889044 [TBL] [Abstract][Full Text] [Related]
15. Loss of expression of HDAC-recruiting methyl-CpG-binding domain proteins in human cancer. Müller-Tidow C; Kügler K; Diederichs S; Klümpen S; Möller M; Vogt U; Metzger R; Schneider PM; Berdel WE; Serve H Br J Cancer; 2001 Oct; 85(8):1168-74. PubMed ID: 11710831 [TBL] [Abstract][Full Text] [Related]
16. Purification of the MeCP2/histone deacetylase complex from Xenopus laevis. Jones PL; Wade PA; Wolffe AP Methods Mol Biol; 2001; 181():297-307. PubMed ID: 12843459 [TBL] [Abstract][Full Text] [Related]
17. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Zhang Y; Fatima N; Dufau ML Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786 [TBL] [Abstract][Full Text] [Related]
18. FEV acts as a transcriptional repressor through its DNA-binding ETS domain and alanine-rich domain. Maurer P; T'Sas F; Coutte L; Callens N; Brenner C; Van Lint C; de Launoit Y; Baert JL Oncogene; 2003 May; 22(21):3319-29. PubMed ID: 12761502 [TBL] [Abstract][Full Text] [Related]
19. Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Wischnewski F; Friese O; Pantel K; Schwarzenbach H Mol Cancer Res; 2007 Jul; 5(7):749-59. PubMed ID: 17634428 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional repression mediated by the KRAB domain of the human C2H2 zinc finger protein Kox1/ZNF10 does not require histone deacetylation. Lorenz P; Koczan D; Thiesen HJ Biol Chem; 2001 Apr; 382(4):637-44. PubMed ID: 11405226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]