BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 14648199)

  • 1. Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea.
    Kulkarni RD; Dean RA
    Mol Genet Genomics; 2004 Jan; 270(6):497-508. PubMed ID: 14648199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea.
    Adachi K; Hamer JE
    Plant Cell; 1998 Aug; 10(8):1361-74. PubMed ID: 9707535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae.
    Li Y; Zhang X; Hu S; Liu H; Xu JR
    PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
    Mitchell TK; Dean RA
    Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.
    Marroquin-Guzman M; Wilson RA
    PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation.
    Irie T; Matsumura H; Terauchi R; Saitoh H
    Mol Genet Genomics; 2003 Nov; 270(2):181-9. PubMed ID: 12955499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast.
    Selvaraj P; Tham HF; Ramanujam R; Naqvi NI
    Mol Microbiol; 2017 Aug; 105(3):484-504. PubMed ID: 28544028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infection-related development in the rice blast fungus Magnaporthe grisea.
    Hamer JE; Talbot NJ
    Curr Opin Microbiol; 1998 Dec; 1(6):693-7. PubMed ID: 10066544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea.
    Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
    Choi W; Dean RA
    Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
    Xu JR; Hamer JE
    Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea.
    Ahn N; Kim S; Choi W; Im KH; Lee YH
    Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
    Skamnioti P; Gurr SJ
    Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.
    Zhou X; Zhang H; Li G; Shaw B; Xu JR
    PLoS Pathog; 2012 Sep; 8(9):e1002911. PubMed ID: 22969430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration.
    Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH
    Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus.
    Banno S; Kimura M; Tokai T; Kasahara S; Higa-Nishiyama A; Takahashi-Ando N; Hamamoto H; Fujimura M; Staskawicz BJ; Yamaguchi I
    FEMS Microbiol Lett; 2003 May; 222(2):221-7. PubMed ID: 12770711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Yan X; Li Y; Yue X; Wang C; Que Y; Kong D; Ma Z; Talbot NJ; Wang Z
    PLoS Pathog; 2011 Dec; 7(12):e1002385. PubMed ID: 22144889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea.
    Nishimura M; Park G; Xu JR
    Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.