BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 14649275)

  • 1. Application of schlieren interferometry to temperature measurements during laser welding of high-density polyethylene films.
    Coelho JM; Abreu MA; Rodrigues FC
    Appl Opt; 2003 Nov; 42(31):6327-34. PubMed ID: 14649275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Color-Thermography for Temperature Determination in Laser Beam Welding of Low-Melting Materials.
    Schwarzkopf K; Rothfelder R; Rasch M; Schmidt M
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites.
    Jongbloed BCP; Teuwen JJE; Benedictus R; Villegas IF
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices.
    Amanat N; James NL; McKenzie DR
    Med Eng Phys; 2010 Sep; 32(7):690-9. PubMed ID: 20570545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method.
    Martínez-González A; Moreno-Hernández D; Guerrero-Viramontes JA; León-Rodríguez M; Zamarripa-Ramírez JCI; Carrillo-Delgado C
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process control of laser conduction welding by thermal imaging measurement with a color camera.
    Bardin F; Morgan S; Williams S; McBride R; Moore AJ; Jones JD; Hand DP
    Appl Opt; 2005 Nov; 44(32):6841-8. PubMed ID: 16294956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.
    Aleiferis P; Charalambides A; Hardalupas Y; Soulopoulos N; Taylor AM; Urata Y
    Appl Opt; 2015 May; 54(14):4566-79. PubMed ID: 25967518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent schlieren effect in liquid flow for chemical analysis.
    Suwanrut J; Chantipmanee N; Kamsong W; Buking S; Mantim T; Saetear P; Nacapricha D
    Talanta; 2018 Oct; 188():74-80. PubMed ID: 30029441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Microwave Welding/Reinforcing Approach at the Interface of Thermoplastic Materials.
    Poyraz S; Zhang L; Schroder A; Zhang X
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22469-77. PubMed ID: 26372303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.
    Martínez-González A; Moreno-Hernández D; Guerrero-Viramontes JA
    Appl Opt; 2013 Aug; 52(22):5562-9. PubMed ID: 23913079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-color, two-dimensional pyrometers based on monochrome and color cameras for high-temperature (>1000 K) planar measurements.
    Jiménez S
    Rev Sci Instrum; 2020 Nov; 91(11):114901. PubMed ID: 33261452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bladder welding in rats using controlled temperature CO2 laser system.
    Lobik L; Ravid A; Nissenkorn I; Kariv N; Bernheim J; Katzir A
    J Urol; 1999 May; 161(5):1662-5. PubMed ID: 10210435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques.
    Brownlee C; Pegoraro V; Shankar S; McCormick PS; Hansen CD
    IEEE Trans Vis Comput Graph; 2011 Nov; 17(11):1574-86. PubMed ID: 21149891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.
    Villegas IF; Palardy G
    J Vis Exp; 2016 Feb; (108):e53592. PubMed ID: 26890931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO₂ Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer.
    Zhang RH; Su HB; Tian J; Mi SJ; Li ZL
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative and quantitative schlieren optical measurement of the human thermal plume.
    Gena AW; Voelker C; Settles GS
    Indoor Air; 2020 Jul; 30(4):757-766. PubMed ID: 32302432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical radiation hazards of laser welding processes. Part 1: Neodymium-YAG laser.
    Rockwell RJ; Moss CE
    Am Ind Hyg Assoc J; 1983 Aug; 44(8):572-9. PubMed ID: 6688700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave facilities for welding thermoplastic composites and preliminary results.
    Ku HS; Siores E; Ball JA
    J Microw Power Electromagn Energy; 1999; 34(4):195-205. PubMed ID: 10687151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical radiation hazards of laser welding processes. Part II: CO2 laser.
    Rockwell RJ; Moss CE
    Am Ind Hyg Assoc J; 1989 Aug; 50(8):419-27. PubMed ID: 2508455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].
    Du X; Yang LJ; Liu T; Jiao J; Wang HC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):15-9. PubMed ID: 27228732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.