BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 14649760)

  • 1. Quantification of hourly variability in NO(x) emissions for baseload coal-fired power plants.
    Abdel-Aziz A; Frey HC
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1401-11. PubMed ID: 14649760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of uncertainty in hourly utility NOx emissions through a photochemical grid air quality model: a case study for the Charlotte, NC, modeling domain.
    Abdel-Aziz AM; Frey HC
    Environ Sci Technol; 2004 Apr; 38(7):2153-60. PubMed ID: 15112819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.
    Zhang Y; Bo X; Zhao Y; Nielsen CP
    Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of variability and uncertainty in air pollutant emission inventories: method and case study for utility NOx emissions.
    Frey HC; Zheng J
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1083-95. PubMed ID: 12269669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of hourly with annual air pollutant emissions: Implications for estimating acute exposure and public health risk.
    Stewart MJ; Hirtz J; Woodall GM; Weitekamp CA; Spence K
    J Air Waste Manag Assoc; 2019 Jul; 69(7):848-856. PubMed ID: 30870104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.
    Lu Z; Streets DG; de Foy B; Krotkov NA
    Environ Sci Technol; 2013 Dec; 47(24):13993-4000. PubMed ID: 24274462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of stationary and mobile measurements to study power plant emissions.
    Yao X; Lau NT; Fang M; Chan CK
    J Air Waste Manag Assoc; 2006 Feb; 56(2):144-51. PubMed ID: 16568797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.
    McNevin TF
    J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.
    Tian H; Liu K; Hao J; Wang Y; Gao J; Qiu P; Zhu C
    Environ Sci Technol; 2013 Oct; 47(19):11350-7. PubMed ID: 24010996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada.
    Mazur M; Mintz R; Lapalme M; Wiens B
    Sci Total Environ; 2009 Dec; 408(2):373-81. PubMed ID: 19875156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of air pollutant concentrations in an industrial region of Turkey.
    Tuygun GT; Altuğ H; Elbir T; Gaga EE
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8230-8241. PubMed ID: 28160171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories.
    Felix JD; Elliott EM; Shaw SL
    Environ Sci Technol; 2012 Mar; 46(6):3528-35. PubMed ID: 22288439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen oxides emission control options for coal-fired electric utility boilers.
    Srivastava RK; Hall RE; Khan S; Culligan K; Lani BW
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1367-88. PubMed ID: 16259432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2012 Sep; 46(18):9838-45. PubMed ID: 22888978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data.
    Singh RP; Kumar S; Singh AK
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fossil-fueled power plants as a source of atmospheric carbon monoxide.
    Nicks DK; Holloway JS; Ryerson TB; Dissly RW; Parrish DD; Frost GJ; Trainer M; Donnelly SG; Schauffler S; Atlas EL; Hübler G; Sueper DT; Fehsenfeld FC
    J Environ Monit; 2003 Feb; 5(1):35-9. PubMed ID: 12619754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.
    Li YR; Gibson JM
    Environ Sci Technol; 2014 Sep; 48(17):10019-27. PubMed ID: 25046689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.