These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14649760)

  • 1. Quantification of hourly variability in NO(x) emissions for baseload coal-fired power plants.
    Abdel-Aziz A; Frey HC
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1401-11. PubMed ID: 14649760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of uncertainty in hourly utility NOx emissions through a photochemical grid air quality model: a case study for the Charlotte, NC, modeling domain.
    Abdel-Aziz AM; Frey HC
    Environ Sci Technol; 2004 Apr; 38(7):2153-60. PubMed ID: 15112819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.
    Zhang Y; Bo X; Zhao Y; Nielsen CP
    Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of variability and uncertainty in air pollutant emission inventories: method and case study for utility NOx emissions.
    Frey HC; Zheng J
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1083-95. PubMed ID: 12269669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of hourly with annual air pollutant emissions: Implications for estimating acute exposure and public health risk.
    Stewart MJ; Hirtz J; Woodall GM; Weitekamp CA; Spence K
    J Air Waste Manag Assoc; 2019 Jul; 69(7):848-856. PubMed ID: 30870104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.
    Lu Z; Streets DG; de Foy B; Krotkov NA
    Environ Sci Technol; 2013 Dec; 47(24):13993-4000. PubMed ID: 24274462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of stationary and mobile measurements to study power plant emissions.
    Yao X; Lau NT; Fang M; Chan CK
    J Air Waste Manag Assoc; 2006 Feb; 56(2):144-51. PubMed ID: 16568797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.
    McNevin TF
    J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.
    Tian H; Liu K; Hao J; Wang Y; Gao J; Qiu P; Zhu C
    Environ Sci Technol; 2013 Oct; 47(19):11350-7. PubMed ID: 24010996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada.
    Mazur M; Mintz R; Lapalme M; Wiens B
    Sci Total Environ; 2009 Dec; 408(2):373-81. PubMed ID: 19875156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of air pollutant concentrations in an industrial region of Turkey.
    Tuygun GT; Altuğ H; Elbir T; Gaga EE
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8230-8241. PubMed ID: 28160171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories.
    Felix JD; Elliott EM; Shaw SL
    Environ Sci Technol; 2012 Mar; 46(6):3528-35. PubMed ID: 22288439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen oxides emission control options for coal-fired electric utility boilers.
    Srivastava RK; Hall RE; Khan S; Culligan K; Lani BW
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1367-88. PubMed ID: 16259432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2012 Sep; 46(18):9838-45. PubMed ID: 22888978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data.
    Singh RP; Kumar S; Singh AK
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fossil-fueled power plants as a source of atmospheric carbon monoxide.
    Nicks DK; Holloway JS; Ryerson TB; Dissly RW; Parrish DD; Frost GJ; Trainer M; Donnelly SG; Schauffler S; Atlas EL; Hübler G; Sueper DT; Fehsenfeld FC
    J Environ Monit; 2003 Feb; 5(1):35-9. PubMed ID: 12619754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.
    Li YR; Gibson JM
    Environ Sci Technol; 2014 Sep; 48(17):10019-27. PubMed ID: 25046689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.