These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 14649760)
21. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Tian H; Wang Y; Cheng K; Qu Y; Hao J; Xue Z; Chai F J Air Waste Manag Assoc; 2012 May; 62(5):576-86. PubMed ID: 22696807 [TBL] [Abstract][Full Text] [Related]
22. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
23. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations. Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995 [TBL] [Abstract][Full Text] [Related]
24. Modeled response of ozone to electricity generation emissions in the northeastern United States using three sensitivity techniques. Couzo E; McCann J; Vizuete W; Blumsack S; West JJ J Air Waste Manag Assoc; 2016 May; 66(5):456-69. PubMed ID: 26796121 [TBL] [Abstract][Full Text] [Related]
25. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Ito S; Yokoyama T; Asakura K Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907 [TBL] [Abstract][Full Text] [Related]
26. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants--temporal trends and spatial variation characteristics. Tian H; Liu K; Zhou J; Lu L; Hao J; Qiu P; Gao J; Zhu C; Wang K; Hua S Environ Sci Technol; 2014 Mar; 48(6):3575-82. PubMed ID: 24564872 [TBL] [Abstract][Full Text] [Related]
27. Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality. McDonald-Buller E; Kimura Y; Craig M; McGaughey G; Allen D; Webster M Environ Sci Technol; 2016 Feb; 50(3):1611-9. PubMed ID: 26727552 [TBL] [Abstract][Full Text] [Related]
28. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India. Mittal ML; Sharma C; Singh R Environ Monit Assess; 2014 Oct; 186(10):6857-66. PubMed ID: 25004854 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of NO2 predictions by the plume volume molar ratio method (PVMRM) and ozone limiting method (OLM) in AERMOD using new field observations. Hendrick EM; Tino VR; Hanna SR; Egan BA J Air Waste Manag Assoc; 2013 Jul; 63(7):844-54. PubMed ID: 23926853 [TBL] [Abstract][Full Text] [Related]
30. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements. Landis MS; Ryan JV; ter Schure AF; Laudal D Environ Sci Technol; 2014 Nov; 48(22):13540-8. PubMed ID: 25325168 [TBL] [Abstract][Full Text] [Related]
31. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal. Roy B; Chen L; Bhattacharya S Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169 [TBL] [Abstract][Full Text] [Related]
32. Marginal emissions factors for the U.S. electricity system. Siler-Evans K; Azevedo IL; Morgan MG Environ Sci Technol; 2012 May; 46(9):4742-8. PubMed ID: 22486733 [TBL] [Abstract][Full Text] [Related]
33. Updated Hourly Emissions Factors for Chinese Power Plants Showing the Impact of Widespread Ultralow Emissions Technology Deployment. Liu X; Gao X; Wu X; Yu W; Chen L; Ni R; Zhao Y; Duan H; Zhao F; Chen L; Gao S; Xu K; Lin J; Ku AY Environ Sci Technol; 2019 Mar; 53(5):2570-2578. PubMed ID: 30689944 [TBL] [Abstract][Full Text] [Related]
34. Modeling the effects of changes in new source review on national SO2 and NOx emissions from electricity-generating units. Evans DA; Hobbs BF; Oren C; Palmer KL Environ Sci Technol; 2008 Jan; 42(2):347-53. PubMed ID: 18284129 [TBL] [Abstract][Full Text] [Related]
35. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
36. The effect of functional forms of nitrogen on fuel-NOx emissions. Zhang L; Su D; Zhong M Environ Monit Assess; 2015 Jan; 187(1):4195. PubMed ID: 25527433 [TBL] [Abstract][Full Text] [Related]
37. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations. Boylan HM; Cain RD; Kingston HM J Air Waste Manag Assoc; 2003 Nov; 53(11):1318-25. PubMed ID: 14649751 [TBL] [Abstract][Full Text] [Related]
38. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations. Lu Z; Streets DG Environ Sci Technol; 2012 Jul; 46(14):7463-70. PubMed ID: 22732062 [TBL] [Abstract][Full Text] [Related]
39. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
40. The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries. Nyashina GS; Strizhak PA Environ Pollut; 2018 Nov; 242(Pt A):31-41. PubMed ID: 30373034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]