These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 14650013)

  • 1. Finite-bandwidth effects on the causal prediction of ultrasonic attenuation of the power-law form.
    Mobley J; Waters KR; Miller JG
    J Acoust Soc Am; 2003 Nov; 114(5):2782-90. PubMed ID: 14650013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles.
    Mobley J; Waters KR; Hughes MS; Hall CS; Marsh JN; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2091-106. PubMed ID: 11108346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion.
    Waters KR; Mobley J; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):822-33. PubMed ID: 16048183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-bandwidth Kramers-Kronig relations for acoustic group velocity and attenuation derivative applied to encapsulated microbubble suspensions.
    Mobley J
    J Acoust Soc Am; 2007 Apr; 121(4):1916-23. PubMed ID: 17471707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential forms of the Kramers-Krönig dispersion relations.
    Waters KR; Hughes MS; Mobley J; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):68-76. PubMed ID: 12578137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2007 Jul; 122(1):222-8. PubMed ID: 17614481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone.
    Waters KR; Hoffmeister BK
    J Acoust Soc Am; 2005 Dec; 118(6):3912-20. PubMed ID: 16419833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified expressions of the subtracted Kramers-Kronig relations using the expanded forms applied to ultrasonic power-law systems.
    Mobley J
    J Acoust Soc Am; 2010 Jan; 127(1):166-73. PubMed ID: 20058960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations.
    Mobley J; Waters KR; Miller JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016604. PubMed ID: 16090104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law.
    Waters KR; Hughes MS; Mobley J; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Aug; 108(2):556-63. PubMed ID: 10955620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave-speed dispersion associated with an attenuation obeying a frequency power law.
    Buckingham MJ
    J Acoust Soc Am; 2015 Nov; 138(5):2871-84. PubMed ID: 26627763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon nanotube composites using Kramers-Kronig relations.
    Mobley J; Mack RA; Gladden JR; Mantena PR
    J Acoust Soc Am; 2009 Jul; 126(1):92-7. PubMed ID: 19603865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Phase Jumps in the Measurement of Phase Velocity of Samples Obeying a Frequency Power-Law Attenuation Coefficient Using Kramers-Kronig Relations.
    Elvira L; Tiago MM; Yoza SAN; Kitano C; Higuti RT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1438-1447. PubMed ID: 32054577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of the Kramers-Kronig relations between ultrasonic attenuation and phase velocity in a finite spectral range for CFRP composites.
    Sokolovskaya YG; Podymova NB; Karabutov AA
    Ultrasonics; 2019 May; 95():37-44. PubMed ID: 30878705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On a time-domain representation of the Kramers-Kronig dispersion relations.
    Waters KR; Hughes MS; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2114-9. PubMed ID: 11108348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations.
    Zhao X; McGough RJ
    J Acoust Soc Am; 2016 May; 139(5):3021. PubMed ID: 27250193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband characterization of plastic and high intensity therapeutic ultrasound phantoms using time delay spectrometry-With validation using Kramers-Kronig relations.
    Maruvada S; Liu Y; Gammell P; Wear K
    J Acoust Soc Am; 2018 Jun; 143(6):3365. PubMed ID: 29960483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral shifts of ultrasonic propagation: a study of theoretical and experimental models.
    Narayana PA; Ophir J
    Ultrason Imaging; 1983 Jan; 5(1):22-9. PubMed ID: 6683016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal ladder models and power law wave equations.
    Kelly JF; McGough RJ
    J Acoust Soc Am; 2009 Oct; 126(4):2072-81. PubMed ID: 19813816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.