These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14650023)

  • 1. A contribution to simulating a three-dimensional larynx model using the finite element method.
    Rosa Mde O; Pereira JC; Grellet M; Alwan A
    J Acoust Soc Am; 2003 Nov; 114(5):2893-905. PubMed ID: 14650023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Laser measuring device for phonation].
    Schade G; Kirchhoff T; Hess M
    Folia Phoniatr Logop; 2005; 57(4):202-15. PubMed ID: 16037696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile airflow during phonation: an excised larynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 1995 Feb; 97(2):1241-8. PubMed ID: 7876445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of phonation in the excised canine larynx.
    Yanagi E; Slavit DH; McCaffrey TV
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Models of Laryngeal Aerodynamics: Potentials and Numerical Costs.
    Sadeghi H; Kniesburges S; Kaltenbacher M; Schützenberger A; Döllinger M
    J Voice; 2019 Jul; 33(4):385-400. PubMed ID: 29428274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.
    Maurer D; Hess M; Gross M
    Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography.
    Jing B; Tang S; Wu L; Wang S; Wan M
    Ultrasound Med Biol; 2016 Dec; 42(12):2812-2825. PubMed ID: 27633284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional morphology of phonation evaluated by dynamic MRI.
    Ahmad M; Dargaud J; Morin A; Cotton F
    Surg Radiol Anat; 2006 Oct; 28(5):481-5. PubMed ID: 16628380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the phonation-related structures among pig, dog, white-tailed deer, and human larynges.
    Jiang JJ; Raviv JR; Hanson DG
    Ann Otol Rhinol Laryngol; 2001 Dec; 110(12):1120-5. PubMed ID: 11768701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical anatomy and physiology of the voice.
    Sataloff RT; Heman-Ackah YD; Hawkshaw MJ
    Otolaryngol Clin North Am; 2007 Oct; 40(5):909-29, v. PubMed ID: 17765688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.