BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1465082)

  • 1. Effect of glucocorticoids and extracellular pH on protein metabolism in cultured cells.
    England BK; Jurkovitz C
    Miner Electrolyte Metab; 1992; 18(2-5):316-9. PubMed ID: 1465082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for protein catabolism in uremia: metabolic acidosis and activation of proteolytic pathways.
    Greiber S; Mitch WE
    Miner Electrolyte Metab; 1992; 18(2-5):233-6. PubMed ID: 1465065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidosis and glucocorticoids induce branched-chain amino acid catabolism.
    England BK; Grewal M; Bailey JL; Price SR
    Miner Electrolyte Metab; 1996; 22(1-3):69-71. PubMed ID: 8676829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of acidosis on protein metabolism.
    Ballmer PE; Imoberdorf R
    Nutrition; 1995; 11(5):462-8; discussion 470. PubMed ID: 8748199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic acidosis accelerates whole body protein degradation and leucine oxidation by a glucocorticoid-dependent mechanism.
    May RC; Masud T; Logue B; Bailey J; England BK
    Miner Electrolyte Metab; 1992; 18(2-5):245-9. PubMed ID: 1465068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism in uremia: the impact of metabolic acidosis.
    Franch HA; Mitch WE
    J Am Soc Nephrol; 1998 Dec; 9(12 Suppl):S78-81. PubMed ID: 11443773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis.
    May RC; Kelly RA; Mitch WE
    J Clin Invest; 1987 Apr; 79(4):1099-103. PubMed ID: 3549778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic acidosis stimulates protein metabolism in uremia.
    Mitch WE
    Miner Electrolyte Metab; 1996; 22(1-3):62-5. PubMed ID: 8676827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched-chain amino acid catabolism in uremia: dual regulation of branched-chain alpha-ketoacid dehydrogenase by extracellular pH and glucocorticoids.
    Wang X; Jurkovitz C; Price SR
    Miner Electrolyte Metab; 1997; 23(3-6):206-9. PubMed ID: 9387118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle protein turnover in chronic renal failure patients with metabolic acidosis or normal acid-base balance.
    Garibotto G; Russo R; Sofia A; Sala MR; Sabatino C; Moscatelli P; Deferrari G; Tizianello A
    Miner Electrolyte Metab; 1996; 22(1-3):58-61. PubMed ID: 8676826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What should define optimal correction of metabolic acidosis in chronic kidney disease?
    Chiu YW; Mehrotra R
    Semin Dial; 2010; 23(4):411-4. PubMed ID: 20701721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular acidosis suppresses endothelial function by inhibiting store-operated Ca2+ entry via non-selective cation channels.
    Asai M; Takeuchi K; Saotome M; Urushida T; Katoh H; Satoh H; Hayashi H; Watanabe H
    Cardiovasc Res; 2009 Jul; 83(1):97-105. PubMed ID: 19351743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chronic renal failure with metabolic acidosis on alanine metabolism in isolated liver cells.
    Cano N; Sturm JM; Meijer AJ; El-Mir MY; Novaretti R; Reynier JP; Leverve XM
    Clin Nutr; 2004 Jun; 23(3):317-24. PubMed ID: 15158294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of branched-chain alpha-ketoacid dehydrogenase kinase expression by glucocorticoids and acidification in LLC-PK1-GR101 cells.
    Wang X; Price SR
    Am J Physiol Renal Physiol; 2004 Mar; 286(3):F504-8. PubMed ID: 14612386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Necessary but not sufficient: the role of glucocorticoids in the acidosis-induced increase in levels of mRNAs encoding proteins of the ATP-dependent proteolytic pathway in rat muscle.
    Price SR; Bailey JL; England BK
    Miner Electrolyte Metab; 1996; 22(1-3):72-5. PubMed ID: 8676830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic acidosis and uremic toxicity: protein and amino acid metabolism.
    Price SR; Mitch WE
    Semin Nephrol; 1994 May; 14(3):232-7. PubMed ID: 8036357
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of ammonia and pH on protein and amino acid metabolism in LLC-PK1 cells.
    Jurkovitz CT; England BK; Ebb RG; Mitch WE
    Kidney Int; 1992 Sep; 42(3):595-601. PubMed ID: 1405337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and targeting of the glutamine transporter SN1 to the basolateral membranes of cortical kidney tubule cells during chronic metabolic acidosis suggest a role in pH regulation.
    Solbu TT; Boulland JL; Zahid W; Lyamouri Bredahl MK; Amiry-Moghaddam M; Storm-Mathisen J; Roberg BA; Chaudhry FA
    J Am Soc Nephrol; 2005 Apr; 16(4):869-77. PubMed ID: 15716335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of metabolic acidosis on serum 1,25(OH)2D3 levels in chronic renal failure.
    Lu KC; Lin SH; Yu FC; Chyr SH; Shieh SD
    Miner Electrolyte Metab; 1995; 21(6):398-402. PubMed ID: 8592483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of protein degradation: what do the rat studies tell us.
    Bailey JL; Mitch WE
    J Nephrol; 2000; 13(2):89-95. PubMed ID: 10858969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.