These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14650840)

  • 1. Visual awareness and the cerebellum: possible role of decorrelation control.
    Dean P; Porrill J; Stone JV
    Prog Brain Res; 2004; 144():61-75. PubMed ID: 14650840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei.
    Dean P; Porrill J
    Prog Brain Res; 2008; 171():177-86. PubMed ID: 18718298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems.
    Porrill J; Dean P
    Neural Comput; 2007 Jan; 19(1):170-93. PubMed ID: 17134321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex.
    Dean P; Porrill J; Stone JV
    Proc Biol Sci; 2002 Sep; 269(1503):1895-904. PubMed ID: 12350251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent cerebellar architecture solves the motor-error problem.
    Porrill J; Dean P; Stone JV
    Proc Biol Sci; 2004 Apr; 271(1541):789-96. PubMed ID: 15255096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cerebellum as an adaptive filter: a general model?
    Dean P; Porrill J
    Funct Neurol; 2010; 25(3):173-80. PubMed ID: 21375070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decorrelation learning in the cerebellum: computational analysis and experimental questions.
    Dean P; Porrill J
    Prog Brain Res; 2014; 210():157-92. PubMed ID: 24916293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of Marr-Albus' plasticity assumption for the cerebellum.
    Ito M
    Acta Biol Acad Sci Hung; 1982; 33(2-3):189-99. PubMed ID: 6129762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive filters and internal models: multilevel description of cerebellar function.
    Porrill J; Dean P; Anderson SR
    Neural Netw; 2013 Nov; 47():134-49. PubMed ID: 23391782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive-filter models of the cerebellum: computational analysis.
    Dean P; Porrill J
    Cerebellum; 2008; 7(4):567-71. PubMed ID: 18972182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human cerebellar activity reflecting an acquired internal model of a new tool.
    Imamizu H; Miyauchi S; Tamada T; Sasaki Y; Takino R; Pütz B; Yoshioka T; Kawato M
    Nature; 2000 Jan; 403(6766):192-5. PubMed ID: 10646603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using input minimization to train a cerebellar model to simulate regulation of smooth pursuit.
    Rothganger FH; Anastasio TJ
    Biol Cybern; 2009 Dec; 101(5-6):339-59. PubMed ID: 19937072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feed-forward associative learning for volitional movement control.
    Fujita M
    Neurosci Res; 2005 Jun; 52(2):153-65. PubMed ID: 15893576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning in a simple motor system.
    Broussard DM; Kassardjian CD
    Learn Mem; 2004; 11(2):127-36. PubMed ID: 15054127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.