BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 14650847)

  • 1. The primacy of chromatic edge processing in normal and cerebrally achromatopsic subjects.
    Kentridge RW; Cole GG; Heywood CA
    Prog Brain Res; 2004; 144():161-9. PubMed ID: 14650847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic edges, surfaces and constancies in cerebral achromatopsia.
    Kentridge RW; Heywood CA; Cowey A
    Neuropsychologia; 2004; 42(6):821-30. PubMed ID: 15037060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical color blindness is not "blindsight for color".
    Heywood CA; Kentridge RW; Cowey A
    Conscious Cogn; 1998 Sep; 7(3):410-23. PubMed ID: 9787052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colour constancy and conscious perception of changes of illuminant.
    Barbur JL; Spang K
    Neuropsychologia; 2008 Feb; 46(3):853-63. PubMed ID: 18206187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinotopic distribution of chromatic responses in human primary visual cortex.
    Vanni S; Henriksson L; Viikari M; James AC
    Eur J Neurosci; 2006 Sep; 24(6):1821-31. PubMed ID: 17004945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color contrast processing in human striate cortex.
    Kentridge RW; Heywood CA; Weiskrantz L
    Proc Natl Acad Sci U S A; 2007 Sep; 104(38):15129-31. PubMed ID: 17823246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal and dichromatic color discrimination measured with transient visual evoked potential.
    Gomes BD; Souza GS; Rodrigues AR; Saito CA; Silveira LC; da Silva Filho M
    Vis Neurosci; 2006; 23(3-4):617-27. PubMed ID: 16962005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human visual cortex responds to invisible chromatic flicker.
    Jiang Y; Zhou K; He S
    Nat Neurosci; 2007 May; 10(5):657-62. PubMed ID: 17396122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional capture by colour and motion in cerebral achromatopsia.
    Cole GG; Heywood C; Kentridge R; Fairholm I; Cowey A
    Neuropsychologia; 2003; 41(13):1837-46. PubMed ID: 14527546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down feature-based selection of matching features for audio-visual synchrony discrimination.
    Fujisaki W; Nishida S
    Neurosci Lett; 2008 Mar; 433(3):225-30. PubMed ID: 18281153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition or facilitation of return: Does chromatic component count?
    do Canto-Pereira LH; Paramei GV; Morya E; Ranvaud RD
    Vis Neurosci; 2006; 23(3-4):489-93. PubMed ID: 16961985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test.
    Moura AL; Teixeira RA; Oiwa NN; Costa MF; Feitosa-Santana C; Callegaro D; Hamer RD; Ventura DF
    Vis Neurosci; 2008; 25(3):463-8. PubMed ID: 18598419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Double-blindsight' revealed through the processing of color and luminance contrast defined motion signals.
    Barbur JL
    Prog Brain Res; 2004; 144():243-59. PubMed ID: 14650853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The characteristics of the color perceptive space in protanomals].
    Vartanov AV; Polianskiĭ VB; Sokolov EN; Evtikhin DV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(5):788-96. PubMed ID: 9949528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete sparing of high-contrast color input to motion perception in cortical color blindness.
    Cavanagh P; Hénaff MA; Michel F; Landis T; Troscianko T; Intriligator J
    Nat Neurosci; 1998 Jul; 1(3):242-7. PubMed ID: 10195150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.