BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 14651244)

  • 1. Strength and elastic modulus of fiber-reinforced composites used for fabricating FPDs.
    Nakamura T; Waki T; Kinuta S; Tanaka H
    Int J Prosthodont; 2003; 16(5):549-53. PubMed ID: 14651244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesive strength between fiber-reinforced composites and veneering composites and fracture load of combinations of these materials.
    Waki T; Nakamura T; Wakabayashi K; Mutobe Y; Yatani H
    Int J Prosthodont; 2004; 17(3):364-8. PubMed ID: 15237887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations.
    Cesar PF; Miranda WG; Braga RR
    J Prosthet Dent; 2001 Sep; 86(3):289-96. PubMed ID: 11552166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro fracture resistance of four-unit fiber-reinforced composite fixed partial dentures.
    Stiesch-Scholz M; Schulz K; Borchers L
    Dent Mater; 2006 Apr; 22(4):374-81. PubMed ID: 16143379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).
    Ellakwa A; Shortall A; Shehata M; Marquis P
    Oper Dent; 2001; 26(5):467-75. PubMed ID: 11551011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability of failure of veneered glass fiber-reinforced composites and glass-infiltrated alumina with or without zirconia reinforcement.
    Chong KH; Chai J
    Int J Prosthodont; 2003; 16(5):487-92. PubMed ID: 14651232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture resistance and marginal adaptation of conventionally cemented fiber-reinforced composite three-unit FPDs.
    Behr M; Rosentritt M; Ledwinsky E; Handel G
    Int J Prosthodont; 2002; 15(5):467-72. PubMed ID: 12375462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translucency of glass-fibre-reinforced composite materials.
    Nakamura T; Tanaka H; Kawamura Y; Wakabayashi K
    J Oral Rehabil; 2004 Aug; 31(8):817-21. PubMed ID: 15265220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite.
    Ellakwa AE; Shortall AC; Marquis PM
    J Prosthet Dent; 2002 Nov; 88(5):485-90. PubMed ID: 12473997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite.
    Göhring TN; Gallo L; Lüthy H
    Dent Mater; 2005 Aug; 21(8):761-72. PubMed ID: 15885765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength and mode of failure of unidirectional and bidirectional glass fiber-reinforced composite materials.
    Chong KH; Chai J
    Int J Prosthodont; 2003; 16(2):161-6. PubMed ID: 12737248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.
    Dyer SR; Lassila LV; Jokinen M; Vallittu PK
    J Prosthet Dent; 2005 Sep; 94(3):219-26. PubMed ID: 16126074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water storage on the flexural properties of three glass fiber-reinforced composites.
    Chai J; Takahashi Y; Hisama K; Shimizu H
    Int J Prosthodont; 2005; 18(1):28-33. PubMed ID: 15754889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix.
    Bae JM; Kim KN; Hattori M; Hasegawa K; Yoshinari M; Kawada E; Oda Y
    Int J Prosthodont; 2001; 14(1):33-9. PubMed ID: 11842902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro examination of the fracture strength of 3 different fiber-reinforced composite and 1 all-ceramic posterior inlay fixed partial denture systems.
    Kolbeck C; Rosentritt M; Behr M; Lang R; Handel G
    J Prosthodont; 2002 Dec; 11(4):248-53. PubMed ID: 12501138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of two methods of reinforcement on the fracture strength of interim fixed partial dentures.
    Fahmy NZ; Sharawi A
    J Prosthodont; 2009 Aug; 18(6):512-20. PubMed ID: 19432757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of some properties of two fiber-reinforced composite materials.
    Lassila LV; Tezvergil A; Lahdenperä M; Alander P; Shinya A; Shinya A; Vallittu PK
    Acta Odontol Scand; 2005 Aug; 63(4):196-204. PubMed ID: 16040441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Framework design of an anterior fiber-reinforced hybrid composite fixed partial denture: a 3D finite element study.
    Yokoyama D; Shinya A; Lassila LV; Gomi H; Nakasone Y; Vallittu PK; Shinya A
    Int J Prosthodont; 2009; 22(4):405-12. PubMed ID: 19639081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.
    Eronat N; Candan U; Türkün M
    J Esthet Restor Dent; 2009; 21(3):171-8; discussion 179-81. PubMed ID: 19508260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures.
    Göhring TN; Schmidlin PR; Lutz F
    Am J Dent; 2002 Feb; 15(1):35-40. PubMed ID: 12074228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.