These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Calcium transport and adenosine triphosphatase activities of erythrocyte membranes in congenital spherocytosis. Johnsson R; Santaholma S; Saris NE Scand J Clin Lab Invest; 1978 Apr; 38(2):121-5. PubMed ID: 148726 [TBL] [Abstract][Full Text] [Related]
4. Studies on calcium transport and calcium-dependent adenosine triphosphatase activity of erythrocyte membranes in hereditary spherocytosis. Zail SS; van den Hoek AK Br J Haematol; 1976 Dec; 34(4):605-11. PubMed ID: 136267 [TBL] [Abstract][Full Text] [Related]
5. [Hereditary diseases of the human erythrocyte membrane skeleton (author's transl)]. Boivin P Nouv Presse Med; 1982 Jul; 11(31):2347-51. PubMed ID: 7111000 [TBL] [Abstract][Full Text] [Related]
7. Herediatary spherocytosis. A review. Weed RI Arch Intern Med; 1975 Oct; 135(10):1316-23. PubMed ID: 1164112 [TBL] [Abstract][Full Text] [Related]
8. 31P-NMR study on nucleotides and intracellular pH of hereditary spherocytes. Kagimoto T; Hayashi F; Yamasaki M; Morino Y; Akasaka K; Kishimoto S Experientia; 1978 Aug; 34(8):1092-3. PubMed ID: 29770 [TBL] [Abstract][Full Text] [Related]
9. Intracellular calcium: lack of effect on ovine red cells. Eaton JW; Berger E; Nelson D; White JG; Rundquist O Proc Soc Exp Biol Med; 1978 Mar; 157(3):506-10. PubMed ID: 345286 [No Abstract] [Full Text] [Related]
10. Polymerisation of red cell membrane protein contributes to spheroechinocyte shape irreversibility. Palek J; Liu PA; Liu SC Nature; 1978 Aug; 274(5670):505-7. PubMed ID: 27725 [No Abstract] [Full Text] [Related]
11. Active calcium transport in normal and abnormal human erythrocytes. Al-Jobore A; Minocherhomjee AM; Villalobo A; Roufogalis BD Prog Clin Biol Res; 1984; 159():243-92. PubMed ID: 6236466 [No Abstract] [Full Text] [Related]
12. [Increased ouabain-insensitive sodium efflux in leaky red cell membranes of the patients with hereditary spherocytosis]. Yoshimoto M; Yawata Y Nihon Ketsueki Gakkai Zasshi; 1982 May; 45(3):549-54. PubMed ID: 6127856 [No Abstract] [Full Text] [Related]
13. The molecular lesion of hereditary spherocytosis (HS): a continuing enigma. Valentine WN Blood; 1977 Feb; 49(2):241-5. PubMed ID: 831876 [No Abstract] [Full Text] [Related]
14. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Lux SE Semin Hematol; 1979 Jan; 16(1):21-51. PubMed ID: 370983 [No Abstract] [Full Text] [Related]
16. Ca2+ influx in normal and spherocytic red cells. Johnsson R; Saris NE Clin Chim Acta; 1988 May; 174(2):141-8. PubMed ID: 2454768 [TBL] [Abstract][Full Text] [Related]
17. Endogenous phosphorylation of membrane proteins in normal and in hereditary spherocytosis erythrocytes. Moret V; Michielin E; Falezza GC; De Sandre G Clin Chim Acta; 1977 Jun; 77(3):359-63. PubMed ID: 872436 [TBL] [Abstract][Full Text] [Related]
18. Pathological alterations of cation movements in red blood cells. Parker JC; Welt LG Arch Intern Med; 1972 Feb; 129(2):320-32. PubMed ID: 4258090 [No Abstract] [Full Text] [Related]
19. Abnormal phosphoenolpyruvate transport in erythrocytes of hereditary spherocytosis. Ideguchi H; Hamasaki N; Ikehara Y Blood; 1981 Sep; 58(3):426-30. PubMed ID: 7259833 [TBL] [Abstract][Full Text] [Related]