These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 14651630)
1. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Viaud M; Brunet-Simon A; Brygoo Y; Pradier JM; Levis C Mol Microbiol; 2003 Dec; 50(5):1451-65. PubMed ID: 14651630 [TBL] [Abstract][Full Text] [Related]
2. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
3. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Schumacher J; Viaud M; Simon A; Tudzynski B Mol Microbiol; 2008 Mar; 67(5):1027-50. PubMed ID: 18208491 [TBL] [Abstract][Full Text] [Related]
4. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267 [TBL] [Abstract][Full Text] [Related]
6. Redox systems in Botrytis cinerea: impact on development and virulence. Viefhues A; Heller J; Temme N; Tudzynski P Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673 [TBL] [Abstract][Full Text] [Related]
7. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
8. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Schumacher J; de Larrinoa IF; Tudzynski B Eukaryot Cell; 2008 Apr; 7(4):584-601. PubMed ID: 18263765 [TBL] [Abstract][Full Text] [Related]
9. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
10. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
11. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related]
12. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
13. A Botrytis cinerea emopamil binding domain protein, required for full virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes. Gioti A; Pradier JM; Fournier E; Le Pêcheur P; Giraud C; Debieu D; Bach J; Leroux P; Levis C Eukaryot Cell; 2008 Feb; 7(2):368-78. PubMed ID: 18156289 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea. Sharma E; Tayal P; Anand G; Mathur P; Kapoor R Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057 [TBL] [Abstract][Full Text] [Related]
15. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573 [TBL] [Abstract][Full Text] [Related]
16. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. van Esse HP; Van't Klooster JW; Bolton MD; Yadeta KA; van Baarlen P; Boeren S; Vervoort J; de Wit PJ; Thomma BP Plant Cell; 2008 Jul; 20(7):1948-63. PubMed ID: 18660430 [TBL] [Abstract][Full Text] [Related]
17. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. Yang Q; Yu F; Yin Y; Ma Z PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890 [TBL] [Abstract][Full Text] [Related]
18. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Nafisi M; Stranne M; Zhang L; van Kan JA; Sakuragi Y Mol Plant Microbe Interact; 2014 Aug; 27(8):781-92. PubMed ID: 24725206 [TBL] [Abstract][Full Text] [Related]
19. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Dalmais B; Schumacher J; Moraga J; LE Pêcheur P; Tudzynski B; Collado IG; Viaud M Mol Plant Pathol; 2011 Aug; 12(6):564-79. PubMed ID: 21722295 [TBL] [Abstract][Full Text] [Related]
20. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]