These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 14651630)
21. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Viaud M; Fillinger S; Liu W; Polepalli JS; Le Pêcheur P; Kunduru AR; Leroux P; Legendre L Mol Plant Microbe Interact; 2006 Sep; 19(9):1042-50. PubMed ID: 16941908 [TBL] [Abstract][Full Text] [Related]
22. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [TBL] [Abstract][Full Text] [Related]
23. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. Harren K; Schumacher J; Tudzynski B PLoS One; 2012; 7(7):e41761. PubMed ID: 22844520 [TBL] [Abstract][Full Text] [Related]
24. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. Gioti A; Simon A; Le Pêcheur P; Giraud C; Pradier JM; Viaud M; Levis C J Mol Biol; 2006 Apr; 358(2):372-86. PubMed ID: 16497329 [TBL] [Abstract][Full Text] [Related]
25. Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Lalève A; Fillinger S; Walker AS Fungal Genet Biol; 2014 Jun; 67():24-36. PubMed ID: 24694728 [TBL] [Abstract][Full Text] [Related]
26. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
27. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Turrion-Gomez JL; Eslava AP; Benito EP Fungal Genet Biol; 2010 May; 47(5):484-96. PubMed ID: 20223291 [TBL] [Abstract][Full Text] [Related]
28. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea. Plaza V; Lagües Y; Carvajal M; Pérez-García LA; Mora-Montes HM; Canessa P; Larrondo LF; Castillo L Fungal Genet Biol; 2015 Mar; 76():36-46. PubMed ID: 25677379 [TBL] [Abstract][Full Text] [Related]
29. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Doehlemann G; Molitor F; Hahn M Fungal Genet Biol; 2005 Jul; 42(7):601-10. PubMed ID: 15950157 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome Profiling Data of Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519 [No Abstract] [Full Text] [Related]
31. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
32. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486 [TBL] [Abstract][Full Text] [Related]
33. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Saitoh Y; Izumitsu K; Morita A; Tanaka C Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618 [TBL] [Abstract][Full Text] [Related]
34. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
35. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948 [TBL] [Abstract][Full Text] [Related]
36. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Soulié MC; Perino C; Piffeteau A; Choquer M; Malfatti P; Cimerman A; Kunz C; Boccara M; Vidal-Cros A Cell Microbiol; 2006 Aug; 8(8):1310-21. PubMed ID: 16882034 [TBL] [Abstract][Full Text] [Related]
37. The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Liu W; Leroux P; Fillinger S Fungal Genet Biol; 2008 Jul; 45(7):1062-74. PubMed ID: 18495505 [TBL] [Abstract][Full Text] [Related]
38. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. González M; Brito N; Frías M; González C PLoS One; 2013; 8(6):e65924. PubMed ID: 23762450 [TBL] [Abstract][Full Text] [Related]
39. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. Jin W; Wu F BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487 [TBL] [Abstract][Full Text] [Related]
40. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. An B; Li B; Qin G; Tian S Fungal Genet Biol; 2015 Feb; 75():46-55. PubMed ID: 25624070 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]