These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 1465204)

  • 21. Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats.
    Dietrich WD; Alonso O; Busto R; Ginsberg MD
    J Neurotrauma; 1994 Dec; 11(6):629-40. PubMed ID: 7723063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations in activity at auditory nuclei of the rat induced by exposure to microwave radiation: autoradiographic evidence using [14C]2-deoxy-D-glucose.
    Wilson BS; Zook JM; Joines WT; Casseday JH
    Brain Res; 1980 Apr; 187(2):291-306. PubMed ID: 7370731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat.
    Richards HK; Simac S; Piechnik S; Pickard JD
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of starvation on glycogen and glucose metabolism in different areas of the rat brain.
    Garriga J; Cussó R
    Brain Res; 1992 Sep; 591(2):277-82. PubMed ID: 1446241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local cerebral energy metabolism: its relationships to local functional activity and blood flow.
    Sokoloff L
    Ciba Found Symp; 1978 Mar; (56):171-97. PubMed ID: 97062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate.
    Grome JJ; McCulloch J
    J Neurochem; 1983 Feb; 40(2):569-76. PubMed ID: 6822839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion.
    Back T; Zhao W; Ginsberg MD
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):566-77. PubMed ID: 7790406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific alterations in local cerebral glucose utilization following striatal lesions.
    Kelly PA; Graham DI; McCulloch J
    Brain Res; 1982 Feb; 233(1):157-72. PubMed ID: 7059797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes.
    Cruz NF; Dienel GA
    J Cereb Blood Flow Metab; 2002 Dec; 22(12):1476-89. PubMed ID: 12468892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of 1,3-di-o-tolylguanidine (DTG), a sigma ligand, on local cerebral glucose utilization in rat brain.
    Hohmann AG; Matsumoto RR; Hemstreet MK; Patrick SL; Margulies JE; Hammer RP; Walker JM
    Brain Res; 1992 Oct; 593(2):265-73. PubMed ID: 1450934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose metabolism and acidosis in the metabolic penumbra of rat brain.
    Peek KE; Lockwood AH; Izumiyama M; Yap EW; Labove J
    Metab Brain Dis; 1989 Dec; 4(4):261-72. PubMed ID: 2601642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supraspinal metabolic activity changes in the rat during adjuvant monoarthritis.
    Neto FL; Schadrack J; Ableitner A; Castro-Lopes JM; Bartenstein P; Zieglgänsberger W; Tölle TR
    Neuroscience; 1999; 94(2):607-21. PubMed ID: 10579221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the GABA receptor agonist, progabide, upon local cerebral glucose utilization.
    Cudennec A; Duverger D; Lloyd KG; MacKenzie ET; McCulloch J; Motohashi N; Nishikawa T; Scatton B
    Brain Res; 1987 Oct; 423(1-2):162-72. PubMed ID: 2823984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered local cerebral glucose utilization induced by electrical stimulations of the thalamic sensory and parafascicular nuclei in rats.
    Aiko Y; Shima F; Hosokawa S; Kato M; Kitamura K
    Brain Res; 1987 Apr; 408(1-2):47-56. PubMed ID: 3594230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential oxidation of glycogen in isolated working rat heart.
    Goodwin GW; Ahmad F; Taegtmeyer H
    J Clin Invest; 1996 Mar; 97(6):1409-16. PubMed ID: 8617872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain.
    Vannucci SJ; Seaman LB; Vannucci RC
    J Cereb Blood Flow Metab; 1996 Jan; 16(1):77-81. PubMed ID: 8530559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-label autoradiographic deoxyglucose method for sequential measurement of regional cerebral glucose utilization.
    Redies C; Diksic M; Evans AC; Gjedde A; Yamamoto YL
    Neuroscience; 1987 Aug; 22(2):601-19. PubMed ID: 3670600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local cerebral blood flow, local cerebral glucose utilization, and flow-metabolism coupling during sevoflurane versus isoflurane anesthesia in rats.
    Lenz C; Rebel A; van Ackern K; Kuschinsky W; Waschke KF
    Anesthesiology; 1998 Dec; 89(6):1480-8. PubMed ID: 9856723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose availability to individual cerebral structures is correlated to glucose metabolism.
    Hawkins RA; Mans AM; Davis DW; Hibbard LS; Lu DM
    J Neurochem; 1983 Apr; 40(4):1013-8. PubMed ID: 6834033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebral blood flow responses to somatosensory stimulation are unaffected by scopolamine in unanesthetized rat.
    Nakao Y; Gotoh J; Kuang TY; Cohen DM; Pettigrew KD; Sokoloff L
    J Pharmacol Exp Ther; 1999 Aug; 290(2):929-34. PubMed ID: 10411611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.