These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14652180)

  • 1. Perspectives with cryogenic RF probes in biomedical MRI.
    Darrasse L; Ginefri JC
    Biochimie; 2003 Sep; 85(9):915-37. PubMed ID: 14652180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe.
    Baltes C; Radzwill N; Bosshard S; Marek D; Rudin M
    NMR Biomed; 2009 Oct; 22(8):834-42. PubMed ID: 19536757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain.
    Ratering D; Baltes C; Nordmeyer-Massner J; Marek D; Rudin M
    Magn Reson Med; 2008 Jun; 59(6):1440-7. PubMed ID: 18421696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI.
    Trakic A; Jin J; Li MY; McClymont D; Weber E; Liu F; Crozier S
    J Magn Reson; 2013 Nov; 236():70-82. PubMed ID: 24076497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First in vivo potassium-39 (³⁹K) MRI at 9.4 T using conventional copper radio frequency surface coil cooled to 77 K.
    Elabyad IA; Kalayciyan R; Shanbhag NC; Schad LR
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):334-45. PubMed ID: 24448595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.
    Zhao Y; Zhao T; Raval SB; Krishnamurthy N; Zheng H; Harris CT; Handler WB; Chronik BA; Ibrahim TS
    Magn Reson Med; 2015 Nov; 74(5):1461-9. PubMed ID: 25367703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A time-harmonic inverse methodology for the design of RF coils in MRI.
    Lawrence BG; Crozier S; Yau DD; Doddrell DM
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):64-71. PubMed ID: 11794773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous cryogenic RF receive coil for
    Sánchez-Heredia JD; Baron R; Hansen ESS; Laustsen C; Zhurbenko V; Ardenkjaer-Larsen JH
    Magn Reson Med; 2020 Jul; 84(1):497-508. PubMed ID: 31782552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation.
    Kozlov M; Turner R
    J Magn Reson; 2009 Sep; 200(1):147-52. PubMed ID: 19570700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inverse design of an open, head/neck RF coil for MRI.
    Lawrence BG; Crozier S; Cowin G; Yau DD
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1024-30. PubMed ID: 12214874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy.
    Webb AG
    J Magn Reson; 2013 Apr; 229():55-66. PubMed ID: 23142002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.
    Brunner DO; Dietrich BE; Çavuşoğlu M; Wilm BJ; Schmid T; Gross S; Barmet C; Pruessmann KP
    NMR Biomed; 2016 Sep; 29(9):1162-72. PubMed ID: 26269210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth study of the electromagnetics of ultrahigh-field MRI.
    Ibrahim TS; Mitchell C; Abraham R; Schmalbrock P
    NMR Biomed; 2007 Feb; 20(1):58-68. PubMed ID: 17006885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments.
    Enomoto A; Hirata H
    J Magn Reson; 2014 Feb; 239():29-33. PubMed ID: 24374749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.
    Connell IR; Gilbert KM; Abou-Khousa MA; Menon RS
    IEEE Trans Med Imaging; 2015 Apr; 34(4):836-45. PubMed ID: 25415982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study of a new RF coil design for prostate MRI.
    Ha S; Roeck WW; Cho J; Nalcioglu O
    Phys Med Biol; 2014 Sep; 59(17):N163-9. PubMed ID: 25138915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI.
    Ha S; Hamamura MJ; Roeck WW; Muftuler LT; Nalcioglu O
    Phys Med Biol; 2010 May; 55(9):2495-504. PubMed ID: 20371909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of sensitive-micro RF coils in desktop MRI systems].
    Wang HZ; Tan ZG; Ren CH; Liu C; Zhang XL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jan; 32(1):35-9. PubMed ID: 18438049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.