These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14653616)

  • 1. Long-term hibernation of human fetal striatal tissue does not adversely affect its differentiation in vitro or graft survival: implications for clinical trials in Huntington's disease.
    Hurelbrink CB; Tyers P; Armstrong RJ; Dunnett SB; Barker RA; Rosser AE
    Cell Transplant; 2003; 12(7):687-95. PubMed ID: 14653616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hibernated human fetal striatal tissue: successful transplantation in a rat model of Huntington's disease.
    Hurelbrink CB; Armstrong RJ; Barker RA; Dunnett SB; Rosser AE
    Cell Transplant; 2000; 9(6):743-9. PubMed ID: 11202561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS.
    Hurelbrink CB; Armstrong RJ; Dunnett SB; Rosser AE; Barker RA
    Eur J Neurosci; 2002 Apr; 15(7):1255-66. PubMed ID: 11982636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staging and preparation of human fetal striatal tissue for neural transplantation in Huntington's disease.
    Rosser AE; Barker RA; Armstrong RJ; Elneil S; Jain M; Hurelbrink CB; Prentice A; Carne C; Thornton S; Hutchinson H; Dunnett SB
    Cell Transplant; 2003; 12(7):679-86. PubMed ID: 14653615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The morphology, integration, and functional efficacy of striatal grafts differ between cell suspensions and tissue pieces.
    Watts C; Brasted PJ; Dunnett SB
    Cell Transplant; 2000; 9(3):395-407. PubMed ID: 10972338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of nigral tissue hibernated with tirilazad mesylate and glial cell line-derived neurotrophic factor.
    Petersen A; Hansson O; Emgård M; Brundin P
    Cell Transplant; 2000; 9(5):577-84. PubMed ID: 11144955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial cell line-derived neurotrophic factor-supplemented hibernation of fetal ventral mesencephalic neurons for transplantation in Parkinson disease: long-term storage.
    Hebb AO; Hebb K; Ramachandran AC; Mendez I
    J Neurosurg; 2003 May; 98(5):1078-83. PubMed ID: 12744369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatal grafts in a rat model of Huntington's disease: time course comparison of MRI and histology.
    Guzman R; Meyer M; Lövblad KO; Ozdoba C; Schroth G; Seiler RW; Widmer HR
    Exp Neurol; 1999 Mar; 156(1):180-90. PubMed ID: 10192789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Survival of dopaminergic neurons that were hibernated in vitro for seven days].
    de la Cuétara-Bernal K; Castillo-Díaz L; Martínez-Martí L; García-Varona AY
    Rev Neurol; 2005 Feb 1-15; 40(3):145-9. PubMed ID: 15750898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial cell line-derived neurotrophic factor-supplemented hibernation of fetal ventral mesencephalic neurons for transplantation in Parkinson disease: long-term storage.
    Hebb AO; Hebb K; Ramachandran AC; Mendez I
    Neurosurg Focus; 2002 Nov; 13(5):e4. PubMed ID: 15769073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating fetal neural transplants into a therapeutic strategy: the example of Huntington's disease.
    Peschanski M; Bachoud-Lévi AC; Hantraye P
    Brain; 2004 Jun; 127(Pt 6):1219-28. PubMed ID: 15047588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of human fetal striatum into a rodent model of Huntington's disease ameliorates locomotor deficits.
    Pundt LL; Kondoh T; Conrad JA; Low WC
    Neurosci Res; 1996 Mar; 24(4):415-20. PubMed ID: 8861112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Tissue Preparation and Donor Age on Striatal Graft Morphology in the Mouse.
    Harrison DJ; Roberton VH; Vinh NN; Brooks SP; Dunnett SB; Rosser AE
    Cell Transplant; 2018 Feb; 27(2):230-244. PubMed ID: 29637815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an MRI-based protocol for cell implantation in four patients with Huntington's disease.
    Watts C; Donovan T; Gillard JH; Antoun NM; Burnstein R; Menon DK; Carpenter TA; Fryer T; Thomas DG; Pickard JD
    Cell Transplant; 2003; 12(7):697-704. PubMed ID: 14653617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of human striatal DARPP-32 neurons in fetuses and following xenografting to the adult rat brain.
    Naimi S; Jeny R; Hantraye P; Peschanski M; Riche D
    Exp Neurol; 1996 Jan; 137(1):15-25. PubMed ID: 8566206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.