These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 14653717)

  • 21. Ultrafast Dynamics of Photongenerated Holes at a CH
    Chu W; Saidi WA; Zheng Q; Xie Y; Lan Z; Prezhdo OV; Petek H; Zhao J
    J Am Chem Soc; 2016 Oct; 138(41):13740-13749. PubMed ID: 27656768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward exceeding the Shockley-Queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state.
    Hoertz PG; Staniszewski A; Marton A; Higgins GT; Incarvito CD; Rheingold AL; Meyer GJ
    J Am Chem Soc; 2006 Jun; 128(25):8234-45. PubMed ID: 16787088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of methanol on rutile TiO
    Mohrhusen L; Kräuter J; Al-Shamery K
    Phys Chem Chem Phys; 2021 Jun; 23(21):12148-12157. PubMed ID: 34018509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular nanostructures of 1,3,5-benzene-tricarboxylic acid at electrified Au(111)/0.05 M H2SO4 interfaces: an in situ scanning tunneling microscopy study.
    Li Z; Han B; Wan LJ; Wandlowski T
    Langmuir; 2005 Jul; 21(15):6915-28. PubMed ID: 16008404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields.
    Tamaki Y; Furube A; Murai M; Hara K; Katoh R; Tachiya M
    J Am Chem Soc; 2006 Jan; 128(2):416-7. PubMed ID: 16402821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of organic monolayers on silicon via gas-phase photochemical reactions.
    Eves BJ; Lopinski GP
    Langmuir; 2006 Mar; 22(7):3180-5. PubMed ID: 16548575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex and charge transfer between TiO2 and pyrroloquinoline quinone.
    Dimitrijevic NM; Poluektov OG; Saponjic ZV; Rajh T
    J Phys Chem B; 2006 Dec; 110(50):25392-8. PubMed ID: 17165986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface chemistry and interfacial charge-transfer mechanisms in photoinduced oxygen exchange at O2-TiO2 interfaces.
    Montoya JF; Peral J; Salvador P
    Chemphyschem; 2011 Apr; 12(5):901-7. PubMed ID: 21442702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition.
    Tamaki Y; Furube A; Murai M; Hara K; Katoh R; Tachiya M
    Phys Chem Chem Phys; 2007 Mar; 9(12):1453-60. PubMed ID: 17356752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FTIR study of adsorption and surface reactions of N(CH3)3 on TiO2.
    Lien CF; Lin YF; Lin YS; Chen MT; Lin JL
    J Phys Chem B; 2005 Jun; 109(21):10962-8. PubMed ID: 16852335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wet electrons at the H2O/TiO2(110) surface.
    Onda K; Li B; Zhao J; Jordan KD; Yang J; Petek H
    Science; 2005 May; 308(5725):1154-8. PubMed ID: 15905397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the efficiency of the photocatalytic one-electron oxidation reaction of aromatic compounds adsorbed on a TiO2 surface.
    Tachikawa T; Yoshida A; Tojo S; Sugimoto A; Fujitsuka M; Majima T
    Chemistry; 2004 Oct; 10(21):5345-53. PubMed ID: 15390135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements.
    Nakamura R; Nakato Y
    J Am Chem Soc; 2004 Feb; 126(4):1290-8. PubMed ID: 14746503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water.
    Liu LM; McAllister B; Ye HQ; Hu P
    J Am Chem Soc; 2006 Mar; 128(12):4017-22. PubMed ID: 16551110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the photoelectrochemical oxidation of methanol on rutile TiO2 (001) and (100) single crystal faces studied by intensity modulated photocurrent spectroscopy.
    Ahmed AY; Oekermann T; Lindner P; Bahnemann D
    Phys Chem Chem Phys; 2012 Feb; 14(8):2774-83. PubMed ID: 22270325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer dynamics from organic adsorbate to a semiconductor surface: zinc phthalocyanine on TiO2(110).
    Ino D; Watanabe K; Takagi N; Matsumoto Y
    J Phys Chem B; 2005 Sep; 109(38):18018-24. PubMed ID: 16853313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals.
    Li L; Liu J; Su Y; Li G; Chen X; Qiu X; Yan T
    Nanotechnology; 2009 Apr; 20(15):155706. PubMed ID: 19420558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.