These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 14653750)
1. Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. Meng H; Perepichka DF; Bendikov M; Wudl F; Pan GZ; Yu W; Dong W; Brown S J Am Chem Soc; 2003 Dec; 125(49):15151-62. PubMed ID: 14653750 [TBL] [Abstract][Full Text] [Related]
2. Room temperature solid-state synthesis of a conductive polymer for applications in stable I₂-free dye-sensitized solar cells. Kim B; Koh JK; Kim J; Chi WS; Kim JH; Kim E ChemSusChem; 2012 Nov; 5(11):2173-80. PubMed ID: 22945546 [TBL] [Abstract][Full Text] [Related]
3. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. Xia Y; Ouyang J ACS Appl Mater Interfaces; 2010 Feb; 2(2):474-83. PubMed ID: 20356194 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of poly(3,4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. Yin X; Wu F; Fu N; Han J; Chen D; Xu P; He M; Lin Y ACS Appl Mater Interfaces; 2013 Sep; 5(17):8423-9. PubMed ID: 23927540 [TBL] [Abstract][Full Text] [Related]
5. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. Xia J; Masaki N; Lira-Cantu M; Kim Y; Jiang K; Yanagida S J Am Chem Soc; 2008 Jan; 130(4):1258-63. PubMed ID: 18171061 [TBL] [Abstract][Full Text] [Related]
7. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles. Li XG; Li J; Huang MR Chemistry; 2009 Jun; 15(26):6446-55. PubMed ID: 19466721 [TBL] [Abstract][Full Text] [Related]
8. Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. Kim EG; Brédas JL J Am Chem Soc; 2008 Dec; 130(50):16880-9. PubMed ID: 19053439 [TBL] [Abstract][Full Text] [Related]
9. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. Li XG; Li J; Meng QK; Huang MR J Phys Chem B; 2009 Jul; 113(29):9718-27. PubMed ID: 19552391 [TBL] [Abstract][Full Text] [Related]
10. Flexible and Conductive Polymer Threads for Efficient Fiber-Shaped Supercapacitors Hu J; Gao B; Qi Q; Zuo Z; Yan K; Hou S; Zou D ACS Omega; 2022 Sep; 7(36):31628-31637. PubMed ID: 36120072 [TBL] [Abstract][Full Text] [Related]
11. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. Sellam ; Hashmi SA ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059 [TBL] [Abstract][Full Text] [Related]
12. Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Patra A; Bendikov M; Chand S Acc Chem Res; 2014 May; 47(5):1465-74. PubMed ID: 24785408 [TBL] [Abstract][Full Text] [Related]
13. Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene. Li XG; Liu YW; Huang MR; Peng S; Gong LZ; Moloney MG Chemistry; 2010 Apr; 16(16):4803-13. PubMed ID: 20213778 [TBL] [Abstract][Full Text] [Related]
14. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors. Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969 [TBL] [Abstract][Full Text] [Related]
16. Conductive electrospun composite fibers based on solid-state polymerized Poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions. Ngoensawat U; Pisuchpen T; Sritana-Anant Y; Rodthongkum N; Hoven VP Talanta; 2022 May; 241():123253. PubMed ID: 35121539 [TBL] [Abstract][Full Text] [Related]
17. Hydrocarbon versus fluorocarbon in the electrodeposition of superhydrophobic polymer films. Darmanin T; Taffin de Givenchy E; Amigoni S; Guittard F Langmuir; 2010 Nov; 26(22):17596-602. PubMed ID: 20879773 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. Reddy KR; Park W; Sin BC; Noh J; Lee Y J Colloid Interface Sci; 2009 Jul; 335(1):34-9. PubMed ID: 19423124 [TBL] [Abstract][Full Text] [Related]
19. X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering. Chen YY; Yu BY; Wang WB; Hsu MF; Lin WC; Lin YC; Jou JH; Shyue JJ Anal Chem; 2008 Jan; 80(2):501-5. PubMed ID: 18081326 [TBL] [Abstract][Full Text] [Related]
20. Flexible and compressible Goretex-PEDOT membrane electrodes for solid-state dye-sensitized solar cells. Mozer AJ; Panda DK; Gambhir S; Romeo TC; Winther-Jensen B; Wallace GG Langmuir; 2010 Feb; 26(3):1452-5. PubMed ID: 19902936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]