BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14653815)

  • 21. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low DeltaC(p) of unfolding.
    Motono C; Oshima T; Yamagishi A
    Protein Eng; 2001 Dec; 14(12):961-6. PubMed ID: 11809926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme.
    Rocha-Martín J; Vega D; Bolivar JM; Godoy CA; Hidalgo A; Berenguer J; Guisán JM; López-Gallego F
    BMC Biotechnol; 2011 Nov; 11():101. PubMed ID: 22053761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system.
    Toomey D; Mayhew SG
    Eur J Biochem; 1998 Feb; 251(3):935-45. PubMed ID: 9490070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of recombinant glyoxylate reductase from thermophile Thermus thermophilus HB27.
    Ogino H; Nakayama H; China H; Kawata T; Doukyu N; Yasuda M
    Biotechnol Prog; 2008; 24(2):321-5. PubMed ID: 18302405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Analysis of Streptococcus pyogenes NADH Oxidase: Conformational Dynamics Involved in Formation of the C(4a)-Peroxyflavin Intermediate.
    Wallen JR; Mallett TC; Okuno T; Parsonage D; Sakai H; Tsukihara T; Claiborne A
    Biochemistry; 2015 Nov; 54(45):6815-29. PubMed ID: 26506002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Important sequence for overexpression of NADH oxidase gene from Thermus thermophilus HB8 in Escherichia coli.
    Suzuki S; Matsumura N; Ohoka T; Sakuma S; Nakahata T; Ishikawa M
    J Environ Sci (China); 2009; 21 Suppl 1():S105-7. PubMed ID: 25084403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leishmania donovani trypanothione reductase: role of urea and guanidine hydrochloride in modulation of functional and structural properties.
    Rai S; Dwivedi UN; Goyal N
    Biochim Biophys Acta; 2009 Oct; 1794(10):1474-84. PubMed ID: 19563920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and reaction mechanism of a novel enone reductase.
    Hou F; Miyakawa T; Kitamura N; Takeuchi M; Park SB; Kishino S; Ogawa J; Tanokura M
    FEBS J; 2015 Apr; 282(8):1526-37. PubMed ID: 25702712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
    Stafford KA; Trbovic N; Butterwick JA; Abel R; Friesner RA; Palmer AG
    J Mol Biol; 2015 Feb; 427(4):853-866. PubMed ID: 25550198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NADH oxidase from the extreme thermophile Thermus aquaticus YT-1. Purification and characterisation.
    Cocco D; Rinaldi A; Savini I; Cooper JM; Bannister JV
    Eur J Biochem; 1988 Jun; 174(2):267-71. PubMed ID: 3383846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis of free reduced flavin generation by flavin reductase from Thermus thermophilus HB8.
    Imagawa T; Tsurumura T; Sugimoto Y; Aki K; Ishidoh K; Kuramitsu S; Tsuge H
    J Biol Chem; 2011 Dec; 286(51):44078-44085. PubMed ID: 22052907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallization and preliminary crystallographic analysis of an NADH oxidase that functions in peroxide reduction in Thermus aquaticus YT-1.
    Mac Sweeney A; D'Arcy A; Higgins TM; Mayhew SG; Toomey D; Walsh MA
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):297-8. PubMed ID: 10089430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea.
    Yang X; Ma K
    Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs.
    Svingor A; Kardos J; Hajdú I; Németh A; Závodszky P
    J Biol Chem; 2001 Jul; 276(30):28121-5. PubMed ID: 11369782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of L-glutamine:D-fructose-6-phosphate amidotransferase from an extreme thermophile Thermus thermophilus HB8.
    Badet-Denisot MA; Fernandez-Herrero LA; Berenguer J; Ooi T; Badet B
    Arch Biochem Biophys; 1997 Jan; 337(1):129-36. PubMed ID: 8990277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH: implication for NADPH and substrate recognition.
    Shimomura Y; Kakuta Y; Fukuyama K
    J Bacteriol; 2003 Jul; 185(14):4211-8. PubMed ID: 12837796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli.
    Park HJ; Kreutzer R; Reiser CO; Sprinzl M
    Eur J Biochem; 1993 Feb; 211(3):909. PubMed ID: 8436145
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.