BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14653815)

  • 41. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change.
    Mallett TC; Claiborne A
    Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites.
    Murray TA; Foster MP; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
    Hollien J; Marqusee S
    J Mol Biol; 2002 Feb; 316(2):327-40. PubMed ID: 11851342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of the Enzyme-Carrier Interface to Overcome the O
    Benítez-Mateos AI; Huber C; Nidetzky B; Bolivar JM; López-Gallego F
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56027-56038. PubMed ID: 33275418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium, Thermus thermophilus HB8.
    Mikawa T; Kato R; Sugahara M; Kuramitsu S
    Nucleic Acids Res; 1998 Feb; 26(4):903-10. PubMed ID: 9461446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus.
    Veronese FM; Boccù E; Fontana A
    Biochemistry; 1976 Sep; 15(18):4026-33. PubMed ID: 786365
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptation of a thermophilic enzyme, 3-isopropylmalate dehydrogenase, to low temperatures.
    Suzuki T; Yasugi M; Arisaka F; Yamagishi A; Oshima T
    Protein Eng; 2001 Feb; 14(2):85-91. PubMed ID: 11297666
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dimerization of Proline Dehydrogenase from Thermus thermophilus Is Crucial for Its Thermostability.
    Huijbers MME; Wu JW; Westphal AH; van Berkel WJH
    Biotechnol J; 2019 May; 14(5):e1800540. PubMed ID: 30791229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.
    Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N
    Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational dynamics coupled to protonation equilibrium at the CuA site of Thermus thermophilus: insights into the origin of thermostability.
    Sanghamitra NJ; Mazumdar S
    Biochemistry; 2008 Feb; 47(5):1309-18. PubMed ID: 18189418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175.
    Li FL; Shi Y; Zhang JX; Gao J; Zhang YW
    Int J Biol Macromol; 2018 Jul; 113():1073-1079. PubMed ID: 29514042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.
    Hansen LD; Transtrum MK; Quinn C; Demarse N
    Biochim Biophys Acta; 2016 May; 1860(5):957-966. PubMed ID: 26721335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
    Tanner JJ; Tu SC; Barbour LJ; Barnes CL; Krause KL
    Protein Sci; 1999 Sep; 8(9):1725-32. PubMed ID: 10493573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins.
    Závodszky P; Kardos J; Svingor ; Petsko GA
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7406-11. PubMed ID: 9636162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structures of mutants of Thermus thermophilus IPMDH adapted to low temperatures.
    Hirose R; Suzuki T; Moriyama H; Sato T; Yamagishi A; Oshima T; Tanaka N
    Protein Eng; 2001 Feb; 14(2):81-4. PubMed ID: 11297665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme.
    Lountos GT; Jiang R; Wellborn WB; Thaler TL; Bommarius AS; Orville AM
    Biochemistry; 2006 Aug; 45(32):9648-59. PubMed ID: 16893166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus.
    Varley PG; Pain RH
    J Mol Biol; 1991 Jul; 220(2):531-8. PubMed ID: 1856872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.