These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14653824)

  • 1. DNA sequence specificity of triplex-binding ligands.
    Keppler MD; James PL; Neidle S; Brown T; Fox KR
    Eur J Biochem; 2003 Dec; 270(24):4982-92. PubMed ID: 14653824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilisation of TG- and AG-containing antiparallel DNA triplexes by triplex-binding ligands.
    Keppler MD; Neidle S; Fox KR
    Nucleic Acids Res; 2001 May; 29(9):1935-42. PubMed ID: 11328877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets.
    Keppler MD; Fox KR
    Nucleic Acids Res; 1997 Nov; 25(22):4644-9. PubMed ID: 9358177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA triple helix stabilisation by covalent attachment of a triplex-specific ligand.
    Keppler MD; McKeen CM; Zegrocka O; Strekowski L; Brown T; Fox KR
    Biochim Biophys Acta; 1999 Oct; 1447(2-3):137-45. PubMed ID: 10542311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a triple helix-specific ligand. BePI (3-methoxy-7H-8-methyl-11- [(3'-amino)propylamino]-benzo[e]pyrido[4,3-b]indole) intercalates into both double-helical and triple-helical DNA.
    Pilch DS; Waring MJ; Sun JS; Rougée M; Nguyen CH; Bisagni E; Garestier T; Hélène C
    J Mol Biol; 1993 Aug; 232(3):926-46. PubMed ID: 8355278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coralyne has a preference for intercalation between TA.T triples in intramolecular DNA triple helices.
    Moraru-Allen AA; Cassidy S; Asensio Alvarez JL; Fox KR; Brown T; Lane AN
    Nucleic Acids Res; 1997 May; 25(10):1890-6. PubMed ID: 9115354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of DNA triple helices by a series of mono- and disubstituted amidoanthraquinones.
    Keppler MD; Read MA; Perry PJ; Trent JO; Jenkins TC; Reszka AP; Neidle S; Fox KR
    Eur J Biochem; 1999 Aug; 263(3):817-25. PubMed ID: 10469146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA triple helix stabilisation by a naphthylquinoline dimer.
    Keppler M; Zegrocka O; Strekowski L; Fox KR
    FEBS Lett; 1999 Mar; 447(2-3):223-6. PubMed ID: 10214950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.
    Wan C; Guo X; Liu Z; Liu S
    J Mass Spectrom; 2008 Feb; 43(2):164-72. PubMed ID: 17828803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand.
    Cassidy SA; Strekowski L; Fox KR
    Nucleic Acids Res; 1996 Nov; 24(21):4133-8. PubMed ID: 8932362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and kinetic stability of intermolecular triple helices containing different proportions of C+*GC and T*AT triplets.
    James PL; Brown T; Fox KR
    Nucleic Acids Res; 2003 Oct; 31(19):5598-606. PubMed ID: 14500823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Footprinting studies on ligands which stabilize DNA triplexes: effects on stringency within a parallel triple helix.
    Chandler SP; Strekowski L; Wilson WD; Fox KR
    Biochemistry; 1995 May; 34(21):7234-42. PubMed ID: 7766634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes.
    Jayarathna DR; Stout HD; Achim C
    Inorg Chem; 2018 Jun; 57(12):6865-6872. PubMed ID: 29845860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes.
    Riechert-Krause F; Autenrieth K; Eick A; Weisz K
    Biochemistry; 2013 Jan; 52(1):41-52. PubMed ID: 23234257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides.
    Cassidy SA; Strekowski L; Wilson WD; Fox KR
    Biochemistry; 1994 Dec; 33(51):15338-47. PubMed ID: 7803397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator.
    Marchand C; Bailly C; Nguyen CH; Bisagni E; Garestier T; Hélène C; Waring MJ
    Biochemistry; 1996 Apr; 35(15):5022-32. PubMed ID: 8664295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base triplet nonisomorphism strongly influences DNA triplex conformation: effect of nonisomorphic G* GC and A* AT triplets and bending of DNA triplexes.
    Rathinavelan T; Yathindra N
    Biopolymers; 2006 Aug; 82(5):443-61. PubMed ID: 16493655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple helix formation at (AT)n adjacent to an oligopurine tract.
    Gowers DM; Fox KR
    Nucleic Acids Res; 1998 Aug; 26(16):3626-33. PubMed ID: 9685475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.