These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1465440)
1. Translocation of a folded protein across the outer membrane in Escherichia coli. Pugsley AP Proc Natl Acad Sci U S A; 1992 Dec; 89(24):12058-62. PubMed ID: 1465440 [TBL] [Abstract][Full Text] [Related]
2. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. Pugsley AP; Bayan N; Sauvonnet N J Bacteriol; 2001 Feb; 183(4):1312-9. PubMed ID: 11157944 [TBL] [Abstract][Full Text] [Related]
3. The requirement for DsbA in pullulanase secretion is independent of disulphide bond formation in the enzyme. Sauvonnet N; Pugsley AP Mol Microbiol; 1998 Feb; 27(3):661-7. PubMed ID: 9489677 [TBL] [Abstract][Full Text] [Related]
4. The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in intramembraneous protein domains. Whitley P; von Heijne G FEBS Lett; 1993 Oct; 332(1-2):49-51. PubMed ID: 8405447 [TBL] [Abstract][Full Text] [Related]
5. Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Jose J; Krämer J; Klauser T; Pohlner J; Meyer TF Gene; 1996 Oct; 178(1-2):107-10. PubMed ID: 8921899 [TBL] [Abstract][Full Text] [Related]
6. Folding of a bacterial outer membrane protein during passage through the periplasm. Eppens EF; Nouwen N; Tommassen J EMBO J; 1997 Jul; 16(14):4295-301. PubMed ID: 9250673 [TBL] [Abstract][Full Text] [Related]
7. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Zapun A; Cooper L; Creighton TE Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795 [TBL] [Abstract][Full Text] [Related]
8. A pathway for disulfide bond formation in vivo. Bardwell JC; Lee JO; Jander G; Martin N; Belin D; Beckwith J Proc Natl Acad Sci U S A; 1993 Feb; 90(3):1038-42. PubMed ID: 8430071 [TBL] [Abstract][Full Text] [Related]
9. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Guilhot C; Jander G; Martin NL; Beckwith J Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240 [TBL] [Abstract][Full Text] [Related]
10. Redox states of DsbA in the periplasm of Escherichia coli. Kishigami S; Akiyama Y; Ito K FEBS Lett; 1995 May; 364(1):55-8. PubMed ID: 7750543 [TBL] [Abstract][Full Text] [Related]
11. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Zapun A; Bardwell JC; Creighton TE Biochemistry; 1993 May; 32(19):5083-92. PubMed ID: 8494885 [TBL] [Abstract][Full Text] [Related]
12. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668 [TBL] [Abstract][Full Text] [Related]
13. Identification of a protein required for disulfide bond formation in vivo. Bardwell JC; McGovern K; Beckwith J Cell; 1991 Nov; 67(3):581-9. PubMed ID: 1934062 [TBL] [Abstract][Full Text] [Related]
14. A mutation in the dsbA gene coding for periplasmic disulfide oxidoreductase reduces transcription of the Escherichia coli ompF gene. Pugsley AP Mol Gen Genet; 1993 Mar; 237(3):407-11. PubMed ID: 8483456 [TBL] [Abstract][Full Text] [Related]
15. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli. Hennecke J; Sillen A; Huber-Wunderlich M; Engelborghs Y; Glockshuber R Biochemistry; 1997 May; 36(21):6391-400. PubMed ID: 9174355 [TBL] [Abstract][Full Text] [Related]
16. Pathways of disulfide bond formation in Escherichia coli. Messens J; Collet JF Int J Biochem Cell Biol; 2006; 38(7):1050-62. PubMed ID: 16446111 [TBL] [Abstract][Full Text] [Related]
17. Structural tolerance of bacterial autotransporters for folded passenger protein domains. Veiga E; de Lorenzo V; Fernández LA Mol Microbiol; 2004 May; 52(4):1069-80. PubMed ID: 15130125 [TBL] [Abstract][Full Text] [Related]
18. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Jacob-Dubuisson F; Pinkner J; Xu Z; Striker R; Padmanhaban A; Hultgren SJ Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11552-6. PubMed ID: 7972100 [TBL] [Abstract][Full Text] [Related]
19. Region of heat-stable enterotoxin II of Escherichia coli involved in translocation across the outer membrane. Okamoto K; Yamanaka H; Takeji M; Fuji Y Microbiol Immunol; 2001; 45(5):349-55. PubMed ID: 11471822 [TBL] [Abstract][Full Text] [Related]
20. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Rietsch A; Belin D; Martin N; Beckwith J Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13048-53. PubMed ID: 8917542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]