These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 14654685)
1. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Strong M; Graeber TG; Beeby M; Pellegrini M; Thompson MJ; Yeates TO; Eisenberg D Nucleic Acids Res; 2003 Dec; 31(24):7099-109. PubMed ID: 14654685 [TBL] [Abstract][Full Text] [Related]
2. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Strong M; Mallick P; Pellegrini M; Thompson MJ; Eisenberg D Genome Biol; 2003; 4(9):R59. PubMed ID: 12952538 [TBL] [Abstract][Full Text] [Related]
3. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Rachman H; Strong M; Ulrichs T; Grode L; Schuchhardt J; Mollenkopf H; Kosmiadi GA; Eisenberg D; Kaufmann SH Infect Immun; 2006 Feb; 74(2):1233-42. PubMed ID: 16428773 [TBL] [Abstract][Full Text] [Related]
4. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Date SV; Marcotte EM Nat Biotechnol; 2003 Sep; 21(9):1055-62. PubMed ID: 12923548 [TBL] [Abstract][Full Text] [Related]
5. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of Wu FL; Liu Y; Jiang HW; Luan YZ; Zhang HN; He X; Xu ZW; Hou JL; Ji LY; Xie Z; Czajkowsky DM; Yan W; Deng JY; Bi LJ; Zhang XE; Tao SC Mol Cell Proteomics; 2017 Aug; 16(8):1491-1506. PubMed ID: 28572091 [No Abstract] [Full Text] [Related]
6. Automatic detection of conserved gene clusters in multiple genomes by graph comparison and P-quasi grouping. Fujibuchi W; Ogata H; Matsuda H; Kanehisa M Nucleic Acids Res; 2000 Oct; 28(20):4029-36. PubMed ID: 11024184 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tekaia F; Gordon SV; Garnier T; Brosch R; Barrell BG; Cole ST Tuber Lung Dis; 1999; 79(6):329-42. PubMed ID: 10694977 [TBL] [Abstract][Full Text] [Related]
8. A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. Zeng J; Cui T; He ZG J Proteome Res; 2012 Sep; 11(9):4682-92. PubMed ID: 22808930 [TBL] [Abstract][Full Text] [Related]
9. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis. Ghosh S; Baloni P; Mukherjee S; Anand P; Chandra N BMC Syst Biol; 2013 Dec; 7():132. PubMed ID: 24308365 [TBL] [Abstract][Full Text] [Related]
10. Global analysis of bacterial transcription factors to predict cellular target processes. Doerks T; Andrade MA; Lathe W; von Mering C; Bork P Trends Genet; 2004 Mar; 20(3):126-31. PubMed ID: 15049306 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Rachman H; Strong M; Schaible U; Schuchhardt J; Hagens K; Mollenkopf H; Eisenberg D; Kaufmann SH Microbes Infect; 2006 Mar; 8(3):747-57. PubMed ID: 16513384 [TBL] [Abstract][Full Text] [Related]
12. Predicting protein linkages in bacteria: which method is best depends on task. Karimpour-Fard A; Leach SM; Gill RT; Hunter LE BMC Bioinformatics; 2008 Sep; 9():397. PubMed ID: 18816389 [TBL] [Abstract][Full Text] [Related]
13. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. Cui T; Zhang L; Wang X; He ZG BMC Genomics; 2009 Mar; 10():118. PubMed ID: 19298676 [TBL] [Abstract][Full Text] [Related]
14. A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis. Defelipe LA; Do Porto DF; Pereira Ramos PI; Nicolás MF; Sosa E; Radusky L; Lanzarotti E; Turjanski AG; Marti MA Tuberculosis (Edinb); 2016 Mar; 97():181-92. PubMed ID: 26791267 [TBL] [Abstract][Full Text] [Related]
15. SNAPping up functionally related genes based on context information: a colinearity-free approach. Kolesov G; Mewes HW; Frishman D J Mol Biol; 2001 Aug; 311(4):639-56. PubMed ID: 11518521 [TBL] [Abstract][Full Text] [Related]
16. Structural proteomics and computational analysis of a deadly pathogen: combating Mycobacterium tuberculosis from multiple fronts. Strong M; Goulding CW Methods Biochem Anal; 2006; 49():245-69. PubMed ID: 16929683 [No Abstract] [Full Text] [Related]
17. Annotation of the M. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. Doerks T; van Noort V; Minguez P; Bork P PLoS One; 2012; 7(4):e34302. PubMed ID: 22485162 [TBL] [Abstract][Full Text] [Related]
18. Spoilt for choice: protein target selection in a time of plenty. Raftery J; Helliwell JR Acta Crystallogr D Biol Crystallogr; 2002 May; 58(Pt 5):875-7. PubMed ID: 11976509 [TBL] [Abstract][Full Text] [Related]
19. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle. Vargas-Romero F; Guitierrez-Najera N; Mendoza-Hernández G; Ortega-Bernal D; Hernández-Pando R; Castañón-Arreola M Pathog Dis; 2016 Mar; 74(2):. PubMed ID: 26733498 [TBL] [Abstract][Full Text] [Related]
20. Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction. Mazandu GK; Mulder NJ Infect Genet Evol; 2012 Jul; 12(5):922-32. PubMed ID: 22085822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]