BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 14654695)

  • 21. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae.
    Chim N; Gall WE; Xiao J; Harris MP; Graham TR; Krezel AM
    Proteins; 2004 Mar; 54(4):784-93. PubMed ID: 14997574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo.
    Georgieva M; Roguev A; Balashev K; Zlatanova J; Miloshev G
    Biochim Biophys Acta; 2012 May; 1819(5):366-74. PubMed ID: 22200500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.
    Teichmann M; Dumay-Odelot H; Fribourg S
    Transcription; 2012; 3(1):2-7. PubMed ID: 22456313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5.
    Cerf C; Lippens G; Ramakrishnan V; Muyldermans S; Segers A; Wyns L; Wodak SJ; Hallenga K
    Biochemistry; 1994 Sep; 33(37):11079-86. PubMed ID: 7727360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution structure of SWI1 AT-rich interaction domain from Saccharomyces cerevisiae and its nonspecific binding to DNA.
    Wang T; Zhang J; Zhang X; Tu X
    Proteins; 2012 Jul; 80(7):1911-7. PubMed ID: 22488857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa.
    Suzuki R; Shindo H; Tase A; Kikuchi Y; Shimizu M; Yamazaki T
    Proteins; 2009 May; 75(2):336-47. PubMed ID: 18831036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study.
    Vila R; Ponte I; Jiménez MA; Rico M; Suau P
    Protein Sci; 2002 Feb; 11(2):214-20. PubMed ID: 11790831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histones H1 and H5 interact preferentially with crossovers of double-helical DNA.
    Krylov D; Leuba S; van Holde K; Zlatanova J
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5052-6. PubMed ID: 8506351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary structure of the C-terminal DNA-binding domain of the transcriptional activator NifA from Klebsiella pneumoniae: spectroscopic analyses.
    Missaillidis S; Jaseja M; Ray P; Chittock R; Wharton CW; Drake AF; Buck M; Hyde EI
    Arch Biochem Biophys; 1999 Jan; 361(2):173-82. PubMed ID: 9882444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PF0610, a novel winged helix-turn-helix variant possessing a rubredoxin-like Zn ribbon motif from the hyperthermophilic archaeon, Pyrococcus furiosus.
    Wang X; Lee HS; Sugar FJ; Jenney FE; Adams MW; Prestegard JH
    Biochemistry; 2007 Jan; 46(3):752-61. PubMed ID: 17223696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif.
    Donaldson LW; Petersen JM; Graves BJ; McIntosh LP
    EMBO J; 1996 Jan; 15(1):125-34. PubMed ID: 8598195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding.
    Ramakrishnan V; Finch JT; Graziano V; Lee PL; Sweet RM
    Nature; 1993 Mar; 362(6417):219-23. PubMed ID: 8384699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMR assignments of human linker histone H1x N-terminal domain and globular domain in the presence and absence of perchlorate.
    de Wit H; Vallet A; Brutscher B; Koorsen G
    Biomol NMR Assign; 2019 Apr; 13(1):249-254. PubMed ID: 30868366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange.
    Wu WH; Alami S; Luk E; Wu CH; Sen S; Mizuguchi G; Wei D; Wu C
    Nat Struct Mol Biol; 2005 Dec; 12(12):1064-71. PubMed ID: 16299513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two DNA-binding sites on the globular domain of histone H5 are required for binding to both bulk and 5 S reconstituted nucleosomes.
    Duggan MM; Thomas JO
    J Mol Biol; 2000 Nov; 304(1):21-33. PubMed ID: 11071807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model for histone H5-DNA interaction: simultaneous minor and major groove binding.
    Segers A; Wyns L; Lasters I
    Biochem Biophys Res Commun; 1991 Jan; 174(2):898-902. PubMed ID: 1847057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linker histones and chromatin remodelling complexes maintain genome stability and control cellular ageing.
    Miloshev G; Staneva D; Uzunova K; Vasileva B; Draganova-Filipova M; Zagorchev P; Georgieva M
    Mech Ageing Dev; 2019 Jan; 177():55-65. PubMed ID: 30025887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.