These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 14654836)
41. Identifying and counting point defects in carbon nanotubes. Fan Y; Goldsmith BR; Collins PG Nat Mater; 2005 Dec; 4(12):906-11. PubMed ID: 16267574 [TBL] [Abstract][Full Text] [Related]
42. Quantum supercurrent transistors in carbon nanotubes. Jarillo-Herrero P; van Dam JA; Kouwenhoven LP Nature; 2006 Feb; 439(7079):953-6. PubMed ID: 16495994 [TBL] [Abstract][Full Text] [Related]
43. Robust Luttinger Liquid State of 1D Dirac Fermions in a Van der Waals System Nb Yao Q; Jung H; Kong K; De C; Kim J; Denlinger JD; Yeom HW Nano Lett; 2023 Sep; 23(17):7961-7967. PubMed ID: 37624091 [TBL] [Abstract][Full Text] [Related]
44. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Gao B; Jiang J; Wu Z; Luo Y J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072 [TBL] [Abstract][Full Text] [Related]
45. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Sayes CM; Liang F; Hudson JL; Mendez J; Guo W; Beach JM; Moore VC; Doyle CD; West JL; Billups WE; Ausman KD; Colvin VL Toxicol Lett; 2006 Feb; 161(2):135-42. PubMed ID: 16229976 [TBL] [Abstract][Full Text] [Related]
46. On the importance of the electrostatic environment for the transport properties of freestanding multiwall carbon nanotubes. Smith PR; Carey JD; Cox DC; Forrest RD; Silva SR Nanotechnology; 2009 Apr; 20(14):145202. PubMed ID: 19420519 [TBL] [Abstract][Full Text] [Related]
47. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration. Yu C; Ryu Y; Yin L; Yang H ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461 [TBL] [Abstract][Full Text] [Related]
48. Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid. Kamata H; Kumada N; Hashisaka M; Muraki K; Fujisawa T Nat Nanotechnol; 2014 Mar; 9(3):177-81. PubMed ID: 24509659 [TBL] [Abstract][Full Text] [Related]
49. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. Hill RW; Proust C; Taillefer L; Fournier P; Greene RL Nature; 2001 Dec; 414(6865):711-5. PubMed ID: 11742390 [TBL] [Abstract][Full Text] [Related]
50. Electrochemical functionalization of single-walled carbon nanotubes in large quantities at a room-temperature ionic liquid supported three-dimensional network electrode. Zhang Y; Shen Y; Li J; Niu L; Dong S; Ivaska A Langmuir; 2005 May; 21(11):4797-800. PubMed ID: 15896013 [TBL] [Abstract][Full Text] [Related]
51. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon. Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062 [TBL] [Abstract][Full Text] [Related]
52. Structure analyses of dodecylated single-walled carbon nanotubes. Liang F; Alemany LB; Beach JM; Billups WE J Am Chem Soc; 2005 Oct; 127(40):13941-8. PubMed ID: 16201816 [TBL] [Abstract][Full Text] [Related]
53. Spectroelectrochemistry of carbon nanostructures. Kavan L; Dunsch L Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657 [TBL] [Abstract][Full Text] [Related]
54. Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Johnston DE; Islam MF; Yodh AG; Johnson AT Nat Mater; 2005 Aug; 4(8):589-92. PubMed ID: 16030521 [TBL] [Abstract][Full Text] [Related]
55. Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes. Wang N; Zhang Y; Yano K; Durkan C; Plank N; Welland ME; Unalan HE; Mann M; Amaratunga GA; Milne WI Nanotechnology; 2009 Mar; 20(10):105201. PubMed ID: 19417511 [TBL] [Abstract][Full Text] [Related]
56. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. Huang B; Xia Y; Zhao M; Li F; Liu X; Ji Y; Song C J Chem Phys; 2005 Feb; 122(8):84708. PubMed ID: 15836078 [TBL] [Abstract][Full Text] [Related]
57. Charge Density Modulation and the Luttinger Liquid State in MoSe Xia Y; Zhang J; Jin Y; Ho W; Xu H; Xie M ACS Nano; 2020 Aug; 14(8):10716-10722. PubMed ID: 32806039 [TBL] [Abstract][Full Text] [Related]
58. Single-walled carbon nanotubes used as stationary phase in GC. Yuan LM; Ren CX; Li L; Ai P; Yan ZH; Zi M; Li ZY Anal Chem; 2006 Sep; 78(18):6384-90. PubMed ID: 16970312 [TBL] [Abstract][Full Text] [Related]
59. Experimental constraints on the theory of high-tc superconductivity. Anderson PW Science; 1992 Jun; 256(5063):1526-31. PubMed ID: 17836318 [TBL] [Abstract][Full Text] [Related]
60. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study. Chiu CC; Dieckmann GR; Nielsen SO Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]