BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14655020)

  • 1. Auditory-evoked evasive manoeuvres in free-flying locusts and moths.
    Dawson JW; Kutsch W; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):69-84. PubMed ID: 14655020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering.
    Dawson JW; Leung FH; Robertson RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity.
    Kutsch W; Berger S; Kautz H
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria.
    Snelling EP; Seymour RS; Matthews PG; White CR
    J Exp Biol; 2012 Sep; 215(Pt 18):3317-23. PubMed ID: 22735344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High duty cycle pulses suppress orientation flights of crambid moths.
    Nakano R; Ihara F; Mishiro K; Toyama M; Toda S
    J Insect Physiol; 2015 Dec; 83():15-21. PubMed ID: 26549128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae).
    Faure PA; Hoy RR
    J Comp Physiol A; 2000 Feb; 186(2):129-42. PubMed ID: 10707311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migrating locusts can detect polarized reflections to avoid flying over the sea.
    Shashar N; Sabbah S; Aharoni N
    Biol Lett; 2005 Dec; 1(4):472-5. PubMed ID: 17148236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae).
    Libersat F; Hoy RR
    J Comp Physiol A; 1991 Oct; 169(4):507-14. PubMed ID: 1779422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli.
    Chan RW; Gabbiani F
    J Exp Biol; 2013 Feb; 216(Pt 4):641-55. PubMed ID: 23364572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction of the acoustic startle response in moths endemic to a bat-free habitat.
    Fullard JH; Ratcliffe JM; Soutar AR
    J Evol Biol; 2004 Jul; 17(4):856-61. PubMed ID: 15271085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts.
    Rascón B; Harrison JF
    J Insect Physiol; 2005 Nov; 51(11):1193-9. PubMed ID: 16095605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of self-motion in tethered flying insects: an optical flow field for locusts.
    Baader A
    J Neurosci Methods; 1991 Jul; 38(2-3):193-9. PubMed ID: 1784122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral analysis of polarization vision in tethered flying locusts.
    Mappes M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jan; 190(1):61-8. PubMed ID: 14648100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence of behavioral auditory thresholds on the delay of echo-like signals in noctuid moths (lepidoptera, noctuidae).
    Lapshin DN; Vorontsov DD
    J Integr Neurosci; 2009 Mar; 8(1):1-12. PubMed ID: 19412976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gliding behaviour elicited by lateral looming stimuli in flying locusts.
    Santer RD; Simmons PJ; Rind FC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of an identified looming-sensitive neuron in triggering a flying locust's escape.
    Santer RD; Rind FC; Stafford R; Simmons PJ
    J Neurophysiol; 2006 Jun; 95(6):3391-400. PubMed ID: 16452263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appetitive flight patterns of male Agrotis segetum moths over landscape scales.
    Reynolds AM; Reynolds DR; Smith AD; Svensson GP; Löfstedt C
    J Theor Biol; 2007 Mar; 245(1):141-9. PubMed ID: 17109897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.
    Rind FC; Santer RD; Wright GA
    J Neurophysiol; 2008 Aug; 100(2):670-80. PubMed ID: 18509080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected dynamic up-tuning of auditory organs in day-flying moths.
    Mora EC; Cobo-Cuan A; Macías-Escrivá F; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):657-66. PubMed ID: 25894491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.