These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 14655020)

  • 21. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria.
    Mappes M; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):43-50. PubMed ID: 16988831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escapes with and without preparation: the neuroethology of visual startle in locusts.
    Simmons PJ; Rind FC; Santer RD
    J Insect Physiol; 2010 Aug; 56(8):876-83. PubMed ID: 20433843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts.
    Gray JR; Lee JK; Robertson RM
    J Comp Physiol A; 2001 Mar; 187(2):115-29. PubMed ID: 15524000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning manoeuvres in free-flying locusts: high-speed video-monitoring.
    Berger S; Kutsch W
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):127-38. PubMed ID: 12975801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forewing asymmetries during auditory avoidance in flying locusts.
    Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R
    J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Close encounters among flying locusts produce wing-beat coupling.
    Kutsch W; Camhi J; Sumbre G
    J Comp Physiol A; 1994; 174(5):643-9. PubMed ID: 18186157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural parameters contributing to temperature compensation in the flight CPG of the locust, Locusta migratoria.
    Xu H; Robertson RM
    Brain Res; 1996 Sep; 734(1-2):213-22. PubMed ID: 8896827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flight and walking in locusts-cholinergic co-activation, temporal coupling and its modulation by biogenic amines.
    Rillich J; Stevenson PA; Pflueger HJ
    PLoS One; 2013; 8(5):e62899. PubMed ID: 23671643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of wing pronation in evasive steering of locusts.
    Ribak G; Rand D; Weihs D; Ayali A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria.
    Taylor GK; Zbikowski R
    J R Soc Interface; 2005 Jun; 2(3):197-221. PubMed ID: 16849180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure to heat shock affects thermosensitivity of the locust flight system.
    Robertson RM; Xu H; Shoemaker KL; Dawson-Scully K
    J Neurobiol; 1996 Mar; 29(3):367-83. PubMed ID: 8907165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurophysiological studies of flight-related density-dependent phase characteristics in locusts.
    Ayali A; Fuchs E; Kutsch W
    Acta Biol Hung; 2004; 55(1-4):137-41. PubMed ID: 15270227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Function of the receptors of the forewing chordotonal organ in Locusta migratoria locusts].
    David OF; Gorelkin VS; SviderskiÄ­ VL
    Zh Evol Biokhim Fiziol; 1977; 13(4):518-20. PubMed ID: 899410
    [No Abstract]   [Full Text] [Related]  

  • 35. Sound strategies: the 65-million-year-old battle between bats and insects.
    Conner WE; Corcoran AJ
    Annu Rev Entomol; 2012; 57():21-39. PubMed ID: 21888517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of a pair of flying locusts to lateral looming visual stimuli.
    Benaragama I; Gray JR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Aug; 200(8):723-38. PubMed ID: 24817250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A radiotelemetric 2-channel unit for transmission of muscle potentials during free flight of the desert locust, Schistocerca gregaria.
    Fischer H; Kautz H; Kutsch W
    J Neurosci Methods; 1996 Jan; 64(1):39-45. PubMed ID: 8869482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes.
    Schmeling F; Stange G; Homberg U
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Mar; 196(3):199-211. PubMed ID: 20131057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria.
    Fischer H; Kutsch W
    J Exp Biol; 2000 Sep; 203(Pt 18):2723-35. PubMed ID: 10952873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.