These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 14655704)

  • 1. Virus inactivation in aluminum and polyaluminum coagulation.
    Matsui Y; Matsushita T; Sakuma S; Gojo T; Mamiya T; Suzuoki H; Inoue T
    Environ Sci Technol; 2003 Nov; 37(22):5175-80. PubMed ID: 14655704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible and reversible adhesion between virus particles and hydrolyzing-precipitating aluminium: a function of coagulation.
    Matsushita T; Matsui Y; Inoue T
    Water Sci Technol; 2004; 50(12):201-6. PubMed ID: 15686022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.
    Nan J; Yao M; Chen T; Li S; Wang Z; Feng G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virus inactivation during coagulation with aluminum coagulants.
    Matsushita T; Shirasaki N; Matsui Y; Ohno K
    Chemosphere; 2011 Oct; 85(4):571-6. PubMed ID: 21745679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride - a mechanistic study.
    Kreißel K; Bösl M; Hügler M; Lipp P; Franzreb M; Hambsch B
    Water Res; 2014 Mar; 51():144-51. PubMed ID: 24429100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal.
    Huang X; Bo X; Zhao Y; Gao B; Wang Y; Sun S; Yue Q; Li Q
    Bioresour Technol; 2014 Aug; 165():116-21. PubMed ID: 24656485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants.
    McCurdy K; Carlson K; Gregory D
    Water Res; 2004 Jan; 38(2):486-94. PubMed ID: 14675661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.
    Kimura M; Matsui Y; Kondo K; Ishikawa TB; Matsushita T; Shirasaki N
    Water Res; 2013 Apr; 47(6):2075-84. PubMed ID: 23422138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of coagulation performance and floc properties of a novel zirconium-glycine complex coagulant with traditional coagulants.
    Zhang Z; Wu C; Wu Y; Hu C
    Environ Sci Pollut Res Int; 2014 May; 21(10):6632-9. PubMed ID: 24499988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: coagulation performance and floc characteristics.
    Zhao YX; Phuntsho S; Gao BY; Yang YZ; Kim JH; Shon HK
    J Environ Manage; 2015 Jan; 147():194-202. PubMed ID: 25291677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of floc properties on coagulant type, dosing mode and nature of particles.
    Yu W; Gregory J; Campos LC; Graham N
    Water Res; 2015 Jan; 68():119-26. PubMed ID: 25462722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate ion in raw water affects performance of high-basicity PACl coagulants produced by Al(OH)
    Chen Y; Nakazawa Y; Matsui Y; Shirasaki N; Matsushita T
    Water Res; 2020 Sep; 183():116093. PubMed ID: 32645580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of the mechanisms of interaction between intestinal bacteriophages and polyaluminum coagulants].
    Korchak GI; Surmasheva EV; Skorokhod IN; Mikhienkova AI; Gorval' AK; Nikonova NA
    Gig Sanit; 2011; (3):84-8. PubMed ID: 21842744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control.
    Hu C; Liu H; Qu J; Wang D; Rut J
    Environ Sci Technol; 2006 Jan; 40(1):325-31. PubMed ID: 16433368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Relationship among coagulation effect of Al-based coagulant, content and speciation of residual aluminum].
    Yang ZL; Gao BY; Yue QY; Jiang YS
    Huan Jing Ke Xue; 2010 Jun; 31(6):1542-7. PubMed ID: 20698270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
    Chen GX; Hu CZ; Zhu LF; Tong HQ
    Huan Jing Ke Xue; 2013 Apr; 34(4):1386-91. PubMed ID: 23798119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.
    Shirasaki N; Matsushita T; Matsui Y; Oshiba A; Marubayashi T; Sato S
    Water Res; 2014 Jan; 48():375-86. PubMed ID: 24139360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of second coagulant addition on coagulation efficiency, floc properties and residual Al for humic acid treatment by Al13 polymer and polyaluminum chloride (PACl).
    Xu W; Gao B; Wang Y; Yue Q; Ren H
    J Hazard Mater; 2012 May; 215-216():129-37. PubMed ID: 22410719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of behaviors of two surrogates for pathogenic waterborne viruses, bacteriophages Qbeta and MS2, during the aluminum coagulation process.
    Shirasaki N; Matsushita T; Matsui Y; Urasaki T; Ohno K
    Water Res; 2009 Feb; 43(3):605-12. PubMed ID: 19042000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced coagulation by two-stage alum addition: the role of solution pH, floc breakage and assistant of non-ionic polyacrylamide.
    Du P; Li X; Yang Y; Fan X; Fang X; Zhou Z
    Environ Technol; 2021 Dec; 42(28):4456-4465. PubMed ID: 32345190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.