These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 14655712)
1. Application of QSTRs in the selection of a surrogate toxicity value for a chemical of concern. Moudgal CJ; Venkatapathy R; Choudhury H; Bruce RM; Lipscomb JC Environ Sci Technol; 2003 Nov; 37(22):5228-35. PubMed ID: 14655712 [TBL] [Abstract][Full Text] [Related]
2. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling. Yost EE; Stanek J; DeWoskin RS; Burgoon LD Environ Sci Technol; 2016 Jul; 50(14):7732-42. PubMed ID: 27172125 [TBL] [Abstract][Full Text] [Related]
3. Assessment of effect levels of chemicals from quantitative structure-activity relationship (QSAR) models. I. Chronic lowest-observed-adverse-effect level (LOAEL). Mumtaz MM; Knauf LA; Reisman DJ; Peirano WB; DeRosa CT; Gombar VK; Enslein K; Carter JR; Blake BW; Huque KI Toxicol Lett; 1995 Sep; 79(1-3):131-43. PubMed ID: 7570650 [TBL] [Abstract][Full Text] [Related]
4. Application of computational toxicological approaches in human health risk assessment. I. A tiered surrogate approach. Wang NC; Jay Zhao Q; Wesselkamper SC; Lambert JC; Petersen D; Hess-Wilson JK Regul Toxicol Pharmacol; 2012 Jun; 63(1):10-9. PubMed ID: 22369873 [TBL] [Abstract][Full Text] [Related]
5. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Basant N; Gupta S; Singh KP Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614 [TBL] [Abstract][Full Text] [Related]
6. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
7. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Shah I; Liu J; Judson RS; Thomas RS; Patlewicz G Regul Toxicol Pharmacol; 2016 Aug; 79():12-24. PubMed ID: 27174420 [TBL] [Abstract][Full Text] [Related]
8. Health-effects related structure-toxicity relationships: a paradigm for the first decade of the new millennium. Schultz TW; Seward JR Sci Total Environ; 2000 Apr; 249(1-3):73-84. PubMed ID: 10813448 [TBL] [Abstract][Full Text] [Related]
9. Human health risk assessment database, "the NHSRC toxicity value database": supporting the risk assessment process at US EPA's National Homeland Security Research Center. Moudgal CJ; Garrahan K; Brady-Roberts E; Gavrelis N; Arbogast M; Dun S Toxicol Appl Pharmacol; 2008 Nov; 233(1):25-33. PubMed ID: 18692516 [TBL] [Abstract][Full Text] [Related]
10. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals. Önlü S; Saçan MT Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782 [TBL] [Abstract][Full Text] [Related]
11. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century. Mortensen HM; Euling SY Toxicol Appl Pharmacol; 2013 Sep; 271(3):395-404. PubMed ID: 21291902 [TBL] [Abstract][Full Text] [Related]
12. A QSAR for baseline toxicity: validation, domain of application, and prediction. Oberg T Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139 [TBL] [Abstract][Full Text] [Related]
13. Quantitative structure-activity relationships for human health effects: commonalities with other endpoints. Cronin MT; Dearden JC; Walker JD; Worth AP Environ Toxicol Chem; 2003 Aug; 22(8):1829-43. PubMed ID: 12924582 [TBL] [Abstract][Full Text] [Related]
14. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140 [TBL] [Abstract][Full Text] [Related]
15. Incorporating ToxCast and Tox21 datasets to rank biological activity of chemicals at Superfund sites in North Carolina. Tilley SK; Reif DM; Fry RC Environ Int; 2017 Apr; 101():19-26. PubMed ID: 28153528 [TBL] [Abstract][Full Text] [Related]
16. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach. Abbasitabar F; Zare-Shahabadi V Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509 [TBL] [Abstract][Full Text] [Related]
18. Molecular modeling for screening environmental chemicals for estrogenicity: use of the toxicant-target approach. Rabinowitz JR; Little SB; Laws SC; Goldsmith MR Chem Res Toxicol; 2009 Sep; 22(9):1594-602. PubMed ID: 19715353 [TBL] [Abstract][Full Text] [Related]
19. Assessment of developmental toxicity potential of chemicals by quantitative structure-toxicity relationship models. Gombar VK; Enslein K; Blake BW Chemosphere; 1995 Jul; 31(1):2499-510. PubMed ID: 7670862 [TBL] [Abstract][Full Text] [Related]
20. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]