BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 14655911)

  • 1. Dopaminergic modulation of behavioral states in mesopontine tegmentum: a reverse microdialysis study in freely moving cats.
    Crochet S; Sakai K
    Sleep; 2003 Nov; 26(7):801-6. PubMed ID: 14655911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum.
    Crochet S; Sakai K
    Eur J Neurosci; 1999 Oct; 11(10):3738-52. PubMed ID: 10564380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study.
    Crochet S; Onoe H; Sakai K
    Eur J Neurosci; 2006 Sep; 24(5):1404-12. PubMed ID: 16987225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat.
    Crochet S; Sakai K
    Neuroreport; 1999 Jul; 10(10):2199-204. PubMed ID: 10424698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.
    Moreno-Balandrán E; Garzón M; Bódalo C; Reinoso-Suárez F; de Andrés I
    Eur J Neurosci; 2008 Jul; 28(2):331-41. PubMed ID: 18702704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat.
    Portas CM; Thakkar M; Rainnie DG; Greene RW; McCarley RW
    Neuroscience; 1997 Jul; 79(1):225-35. PubMed ID: 9178878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat.
    Lin JS; Hou Y; Sakai K; Jouvet M
    J Neurosci; 1996 Feb; 16(4):1523-37. PubMed ID: 8778302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat.
    Vanni-Mercier G; Sakai K; Lin JS; Jouvet M
    Arch Ital Biol; 1989 Jun; 127(3):133-64. PubMed ID: 2774793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states.
    Webster HH; Jones BE
    Brain Res; 1988 Aug; 458(2):285-302. PubMed ID: 2905197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals.
    Strecker RE; Thakkar MM; Porkka-Heiskanen T; Dauphin LJ; Bjørkum AA; McCarley RW
    Sleep Res Online; 1999; 2(2):21-7. PubMed ID: 11421239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats.
    Koyama Y; Sakai K
    Neuroscience; 2000; 96(4):723-33. PubMed ID: 10727790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.
    Vazquez J; Baghdoyan HA
    J Neurophysiol; 2004 Oct; 92(4):2198-206. PubMed ID: 15212422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of noradrenergic and GABA-ergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats.
    Pal D; Mallick BN
    Neuropharmacology; 2006 Jul; 51(1):1-11. PubMed ID: 16616214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate receptors: a novel mechanism in paradoxical (REM) sleep generation.
    Onoe H; Sakai K
    Neuroreport; 1995 Jan; 6(2):353-6. PubMed ID: 7756627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.
    Sakai K; Neuzeret PC
    Arch Ital Biol; 2011 Dec; 149(4):325-47. PubMed ID: 22205587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study.
    Thakkar MM; Strecker RE; McCarley RW
    J Neurosci; 1998 Jul; 18(14):5490-7. PubMed ID: 9651229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine.
    Reid MS; Tafti M; Nishino S; Sampathkumaran R; Siegel JM; Mignot E
    Brain Res; 1996 Sep; 733(1):83-100. PubMed ID: 8891251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat.
    Datta S; Spoley EE; Patterson EH
    Am J Physiol Regul Integr Comp Physiol; 2001 Mar; 280(3):R752-9. PubMed ID: 11171654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-adrenoceptive influences on the control of the sleep-waking cycle in the cat.
    Leppävuori A; Putkonen PT
    Brain Res; 1980 Jul; 193(1):95-115. PubMed ID: 6103744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.