These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 14656145)
1. Development of a segmented model for a continuous electrophoretic moving bed enantiomer separation. Thome BM; Ivory CF Biotechnol Prog; 2003; 19(6):1703-12. PubMed ID: 14656145 [TBL] [Abstract][Full Text] [Related]
2. Increasing the scale of true moving bed electrophoretic separations using filtration to reduce solvent volumetric flows between sections II and III. Thome BM; Ivory CF J Chromatogr A; 2007 Jan; 1138(1-2):291-300. PubMed ID: 17097668 [TBL] [Abstract][Full Text] [Related]
3. Modeling of a microfluidic channel in the presence of an electrostatic induced cross-flow. Scuor N; Gallina P; Sbaizero O; Mahajan RL Biomed Microdevices; 2005 Sep; 7(3):231-42. PubMed ID: 16133811 [TBL] [Abstract][Full Text] [Related]
4. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Wang PJ; Chang CY; Chang ML Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583 [TBL] [Abstract][Full Text] [Related]
6. A model for Joule heating-induced dispersion in microchip electrophoresis. Wang Y; Lin Q; Mukherjee T Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376 [TBL] [Abstract][Full Text] [Related]
7. Frequency bandwidth limitation of external pulse electric field in microchannels. Applications to analyte velocity modulation detections. Wang SC Biosens Bioelectron; 2004 Jul; 20(1):139-42. PubMed ID: 15142587 [TBL] [Abstract][Full Text] [Related]
8. Continuous voltage gradients and their application to true moving bed electrophoresis. Thome BM; Ivory CF J Chromatogr A; 2006 Sep; 1129(1):119-28. PubMed ID: 16859694 [TBL] [Abstract][Full Text] [Related]
9. Characterization and optimization of acoustic filter performance by experimental design methodology. Gorenflo VM; Ritter JB; Aeschliman DS; Drouin H; Bowen BD; Piret JM Biotechnol Bioeng; 2005 Jun; 90(6):746-53. PubMed ID: 15858795 [TBL] [Abstract][Full Text] [Related]
11. Continuous fractionation of enantiomer pairs in free solution using an electrophoretic analog of simulated moving bed chromatography. Thome B; Ivory CF J Chromatogr A; 2002 Apr; 953(1-2):263-77. PubMed ID: 12058940 [TBL] [Abstract][Full Text] [Related]
12. A framework for the prediction of scale-up when using compressible chromatographic packings. Tran R; Joseph JR; Sinclair A; Bracewell D; Zhou Y; Titchener-Hooker NJ Biotechnol Prog; 2007; 23(2):413-22. PubMed ID: 17302429 [TBL] [Abstract][Full Text] [Related]
13. Use of single-isomer, multiply charge chiral resolving agents for the continuous, preparative-scale electrophoretic separation of enantiomers based on the principle of equal-but-opposite analyte mobilities. Glukhovskiy P; Vigh G Electrophoresis; 2000 Jun; 21(10):2010-5. PubMed ID: 10879960 [TBL] [Abstract][Full Text] [Related]
14. Moving bed reactor setup to study complex gas-solid reactions. Gupta P; Velazquez-Vargas LG; Valentine C; Fan LS Rev Sci Instrum; 2007 Aug; 78(8):085106. PubMed ID: 17764354 [TBL] [Abstract][Full Text] [Related]
15. Use of floating electrodes in transient isotachophoresis to increase the sensitivity of detection. Kurnik RT; Boone TD; Nguyen U; Ricco AJ; Williams SJ Lab Chip; 2003 May; 3(2):86-92. PubMed ID: 15100788 [TBL] [Abstract][Full Text] [Related]
16. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Chen L; Conlisk AT Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305 [TBL] [Abstract][Full Text] [Related]
17. Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip. Feng X; Yi Y; Yu X; Pang DW; Zhang ZL Lab Chip; 2010 Feb; 10(3):313-9. PubMed ID: 20091002 [TBL] [Abstract][Full Text] [Related]