These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 14656156)

  • 1. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration.
    Lee SH; Miller JS; Moon JJ; West JL
    Biotechnol Prog; 2005; 21(6):1736-41. PubMed ID: 16321059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell migration through defined, synthetic ECM analogs.
    Gobin AS; West JL
    FASEB J; 2002 May; 16(7):751-3. PubMed ID: 11923220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration.
    Lee SH; Moon JJ; Miller JS; West JL
    Biomaterials; 2007 Jul; 28(20):3163-70. PubMed ID: 17395258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.
    Raeber GP; Lutolf MP; Hubbell JA
    Biophys J; 2005 Aug; 89(2):1374-88. PubMed ID: 15923238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices.
    Wachiralarpphaithoon C; Iwasaki Y; Akiyoshi K
    Biomaterials; 2007 Feb; 28(6):984-93. PubMed ID: 17107708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ; Anseth KS
    Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic extracellular matrices for in situ tissue engineering.
    Pratt AB; Weber FE; Schmoekel HG; Müller R; Hubbell JA
    Biotechnol Bioeng; 2004 Apr; 86(1):27-36. PubMed ID: 15007838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels.
    Behravesh E; Mikos AG
    J Biomed Mater Res A; 2003 Sep; 66(3):698-706. PubMed ID: 12918054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
    Cai S; Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    J Biomed Mater Res A; 2004 Jun; 69(3):535-43. PubMed ID: 15127400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2004 Feb; 25(5):895-906. PubMed ID: 14609678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.