These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14656336)

  • 21. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus.
    Chen CY; Hafed ZM
    J Neurophysiol; 2017 Apr; 117(4):1657-1673. PubMed ID: 28100659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurons and behavior: the same rules of multisensory integration apply.
    Stein BE; Huneycutt WS; Meredith MA
    Brain Res; 1988 May; 448(2):355-8. PubMed ID: 3378157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming.
    Dorris MC; Olivier E; Munoz DP
    J Neurosci; 2007 May; 27(19):5053-62. PubMed ID: 17494691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.
    Stuphorn V; Bauswein E; Hoffmann KP
    J Neurophysiol; 2000 Mar; 83(3):1283-99. PubMed ID: 10712456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs.
    Alvarado JC; Stanford TR; Rowland BA; Vaughan JW; Stein BE
    J Neurosci; 2009 May; 29(20):6580-92. PubMed ID: 19458228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region.
    Gandhi NJ; Keller EL
    J Neurophysiol; 1999 Dec; 82(6):3236-53. PubMed ID: 10601457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus.
    Paré M; Wurtz RH
    J Neurophysiol; 2001 Jun; 85(6):2545-62. PubMed ID: 11387400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discharge properties of monkey tectoreticular neurons.
    Rodgers CK; Munoz DP; Scott SH; Paré M
    J Neurophysiol; 2006 Jun; 95(6):3502-11. PubMed ID: 16641382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual Experience Is Required for the Development of Eye Movement Maps in the Mouse Superior Colliculus.
    Wang L; Liu M; Segraves MA; Cang J
    J Neurosci; 2015 Sep; 35(35):12281-6. PubMed ID: 26338338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades.
    Wang CA; Blohm G; Huang J; Boehnke SE; Munoz DP
    Biol Psychol; 2017 Oct; 129():36-44. PubMed ID: 28789960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior.
    Everling S; Paré M; Dorris MC; Munoz DP
    J Neurophysiol; 1998 Feb; 79(2):511-28. PubMed ID: 9463418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsaccadic suppression of visual bursts in the primate superior colliculus.
    Hafed ZM; Krauzlis RJ
    J Neurosci; 2010 Jul; 30(28):9542-7. PubMed ID: 20631182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the rostral superior colliculus in active visual fixation and execution of express saccades.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1992 Apr; 67(4):1000-2. PubMed ID: 1588382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deficits in saccade target selection after inactivation of superior colliculus.
    McPeek RM; Keller EL
    Nat Neurosci; 2004 Jul; 7(7):757-63. PubMed ID: 15195099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys.
    Basso MA; Krauzlis RJ; Wurtz RH
    J Neurophysiol; 2000 Aug; 84(2):892-908. PubMed ID: 10938315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Somatosensory-motor neuronal activity in the superior colliculus of the primate.
    Nagy A; Kruse W; Rottmann S; Dannenberg S; Hoffmann KP
    Neuron; 2006 Nov; 52(3):525-34. PubMed ID: 17088217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal structure of visual receptive fields in macaque superior colliculus.
    Churan J; Guitton D; Pack CC
    J Neurophysiol; 2012 Nov; 108(10):2653-67. PubMed ID: 22933722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.