BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14656445)

  • 1. Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head.
    Gourinath S; Himmel DM; Brown JH; Reshetnikova L; Szent-Györgyi AG; Cohen C
    Structure; 2003 Dec; 11(12):1621-7. PubMed ID: 14656445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor.
    Himmel DM; Gourinath S; Reshetnikova L; Shen Y; Szent-Györgyi AG; Cohen C
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12645-50. PubMed ID: 12297624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three conformational states of scallop myosin S1.
    Houdusse A; Szent-Gyorgyi AG; Cohen C
    Proc Natl Acad Sci U S A; 2000 Oct; 97(21):11238-43. PubMed ID: 11016966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head.
    Houdusse A; Kalabokis VN; Himmel D; Szent-Györgyi AG; Cohen C
    Cell; 1999 May; 97(4):459-70. PubMed ID: 10338210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state.
    Dominguez R; Freyzon Y; Trybus KM; Cohen C
    Cell; 1998 Sep; 94(5):559-71. PubMed ID: 9741621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A; Peyser YM; Nili M; Ajtai K; Reisler E; Burghardt TP
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of myosin interdomain interactions during contraction: deductions from proteins in solution.
    Burghardt TP; Park S; Ajtai K
    Biochemistry; 2001 Apr; 40(15):4834-43. PubMed ID: 11294651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility within the heads of muscle myosin-2 molecules.
    Billington N; Revill DJ; Burgess SA; Chantler PD; Knight PJ
    J Mol Biol; 2014 Feb; 426(4):894-907. PubMed ID: 24333017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of myosin interdomain interactions during contraction: deductions from muscle fibers using polarized fluorescence.
    Burghardt TP; Cruz-Walker AR; Park S; Ajtai K
    Biochemistry; 2001 Apr; 40(15):4821-33. PubMed ID: 11294650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin isoforms show unique conformations in the actin-bound state.
    Volkmann N; Ouyang G; Trybus KM; DeRosier DJ; Lowey S; Hanein D
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3227-32. PubMed ID: 12612343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and dynamics of the SH1-SH2 helix in scallop myosin.
    Nitao LK; Loo RR; O'Neall-Hennessey E; Loo JA; Szent-Györgyi AG; Reisler E
    Biochemistry; 2003 Jul; 42(25):7663-74. PubMed ID: 12820875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding.
    Risal D; Gourinath S; Himmel DM; Szent-Györgyi AG; Cohen C
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8930-5. PubMed ID: 15184651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational selection during weak binding at the actin and myosin interface.
    Xu J; Root DD
    Biophys J; 2000 Sep; 79(3):1498-510. PubMed ID: 10969011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caldesmon freezes the structure of actin filaments during the actomyosin ATPase cycle.
    Borovikov YS; Kulikova N; Pronina OE; Khaimina SS; Wrzosek A; Dabrowska R
    Biochim Biophys Acta; 2006 Jun; 1764(6):1054-62. PubMed ID: 16713410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of the SH1-SH2 helix in the transition states of myosin subfragment-1.
    Nitao LK; Yeates TO; Reisler E
    Biophys J; 2002 Nov; 83(5):2733-41. PubMed ID: 12414706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation.
    Houdusse A; Cohen C
    Structure; 1996 Jan; 4(1):21-32. PubMed ID: 8805510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin.
    Brown JH; Kumar VS; O'Neall-Hennessey E; Reshetnikova L; Robinson H; Nguyen-McCarty M; Szent-Györgyi AG; Cohen C
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):114-9. PubMed ID: 21149681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarities and differences between frozen-hydrated, rigor acto-S1 complexes of insect flight and chicken skeletal muscles.
    Littlefield KP; Ward AB; Chappie JS; Reedy MK; Bernstein SI; Milligan RA; Reedy MC
    J Mol Biol; 2008 Sep; 381(3):519-28. PubMed ID: 18588896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy.
    Kimori Y; Baba N; Katayama E
    Biochem J; 2013 Feb; 450(1):23-35. PubMed ID: 23211187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling of the myosin-S1(A1) isoform.
    Aydt EM; Wolff G; Morano I
    J Struct Biol; 2007 Jul; 159(1):158-63. PubMed ID: 17498971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.