BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14656659)

  • 21. Calculated stress-shielding in the distal femur after total knee replacement corresponds to the reported location of bone loss.
    Tissakht M; Ahmed AM; Chan KC
    J Orthop Res; 1996 Sep; 14(5):778-85. PubMed ID: 8893772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a cement-bone composite layer and prosthesis geometry on stresses in a prosthetically resurfaced tibia.
    Shrivastava SC; Ahmed AM; Shirazi-Adl A; Burke DL
    J Biomed Mater Res; 1982 Nov; 16(6):929-49. PubMed ID: 7174717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tibial fixation without screws in cementless total knee arthroplasty.
    Cooke C; Walter WK; Zicat B
    J Arthroplasty; 2006 Feb; 21(2):237-41. PubMed ID: 16520213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Impacted cancellous autograft for reconstructing bone defects of tibial plateau in total knee arthroplasty].
    Cai X; Wang Y; Wang JF; Zhou YG; Dong JY; Chen JY; Wei M; Wang ZG; Liu YJ; Li ZL
    Zhonghua Yi Xue Za Zhi; 2008 Nov; 88(41):2907-11. PubMed ID: 19080097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems.
    Quilez MP; Seral B; Pérez MA
    PLoS One; 2017; 12(9):e0184361. PubMed ID: 28886100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical comparison between metal block and cement-screw techniques for the treatment of tibial bone defects in total knee arthroplasty based on finite element analysis.
    Liu Y; Zhang A; Wang C; Yin W; Wu N; Chen H; Chen B; Han Q; Wang J
    Comput Biol Med; 2020 Oct; 125():104006. PubMed ID: 32971324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of Palamed G bone cement on early migration of tibial components in total knee arthroplasty.
    Kienapfel H; Hildebrand R; Neumann T; Specht R; Koller M; Celik I; Mueller HH; Griss P; Klose KJ; Georg C
    Inflamm Res; 2004 Aug; 53 Suppl 2():S159-63. PubMed ID: 15338069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new press-fit stem concept to reduce the risk of end-of-stem pain at revision TKA: a pre-clinical study.
    Completo A; Fonseca F; Simões JA; Ramos A; Relvas C
    Knee; 2012 Oct; 19(5):537-42. PubMed ID: 22281413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of stems and augments for bone loss in revision knee arthroplasty.
    Mabry TM; Hanssen AD
    J Arthroplasty; 2007 Jun; 22(4 Suppl 1):56-60. PubMed ID: 17570279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does a tensioning device pinned to the tibia improve knee anterior-posterior load-displacement compared to manual tensioning of the graft following anterior cruciate ligament reconstruction? A cadaveric study of two tibial fixation devices.
    Thompson DM; Hull ML; Howell SM
    J Orthop Res; 2006 Sep; 24(9):1832-41. PubMed ID: 16865723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Theoretical analysis of changes in femoral stresses after total hip arthroplasty].
    Yan S; Wu H; Yu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):530-4. PubMed ID: 16856384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical tests and finite element models for bone holding power of tibial locking screws.
    Hou SM; Hsu CC; Wang JL; Chao CK; Lin J
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):738-45. PubMed ID: 15288461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mechanical mechanism in plastic stage of fracture union--application of bone surface remodeling theory].
    Zhu X; Bai X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):410-4. PubMed ID: 11211827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone remodeling characteristics of a short-stemmed total hip replacement.
    Chen HH; Morrey BF; An KN; Luo ZP
    J Arthroplasty; 2009 Sep; 24(6):945-50. PubMed ID: 18848420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain shielding in trabecular bone at the tibial cement-bone interface.
    Srinivasan P; Miller MA; Verdonschot N; Mann KA; Janssen D
    J Mech Behav Biomed Mater; 2017 Feb; 66():181-186. PubMed ID: 27889526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Addition of a short central extension to surface cemented tibial trays in primary TKA: an in vitro study of the effect on initial fixation stability and its relationship to supporting bone density.
    Pérez-Blanca A; Prado M; Ezquerro F; Montañéz E; Espejo A
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):483-92. PubMed ID: 18171597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional finite element analysis of unicompartmental knee arthroplasty--the influence of tibial component inclination.
    Sawatari T; Tsumura H; Iesaka K; Furushiro Y; Torisu T
    J Orthop Res; 2005 May; 23(3):549-54. PubMed ID: 15885474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.