These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 14657351)

  • 21. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semisynthetic proteins: model systems for the study of the insertion of hydrophobic peptides into preformed lipid bilayers.
    Moll TS; Thompson TE
    Biochemistry; 1994 Dec; 33(51):15469-82. PubMed ID: 7528536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
    Elkins MR; Williams JK; Gelenter MD; Dai P; Kwon B; Sergeyev IV; Pentelute BL; Hong M
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12946-12951. PubMed ID: 29158386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid composition and the lateral pressure profile in bilayers.
    Cantor RS
    Biophys J; 1999 May; 76(5):2625-39. PubMed ID: 10233077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The process of folding proteins into membranes: challenges and progress.
    Stanley AM; Fleming KG
    Arch Biochem Biophys; 2008 Jan; 469(1):46-66. PubMed ID: 17971290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy.
    Cady SD; Wang J; Wu Y; DeGrado WF; Hong M
    J Am Chem Soc; 2011 Mar; 133(12):4274-84. PubMed ID: 21381693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly of the m2 tetramer is strongly modulated by lipid chain length.
    Schick S; Chen L; Li E; Lin J; Köper I; Hristova K
    Biophys J; 2010 Sep; 99(6):1810-7. PubMed ID: 20858425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by
    Sutherland M; Tran N; Hong M
    Biochim Biophys Acta Biomembr; 2022 Jul; 1864(7):183909. PubMed ID: 35276226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways.
    Pocanschi CL; Apell HJ; Puntervoll P; Høgh B; Jensen HB; Welte W; Kleinschmidt JH
    J Mol Biol; 2006 Jan; 355(3):548-61. PubMed ID: 16310217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi.
    Webb RJ; East JM; Sharma RP; Lee AG
    Biochemistry; 1998 Jan; 37(2):673-9. PubMed ID: 9425090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
    Nezil FA; Bloom M
    Biophys J; 1992 May; 61(5):1176-83. PubMed ID: 1600079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property.
    Kovacs FA; Denny JK; Song Z; Quine JR; Cross TA
    J Mol Biol; 2000 Jan; 295(1):117-25. PubMed ID: 10623512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between ion channel-inactivating peptides and anionic phospholipid vesicles as model targets.
    Encinar JA; Fernandez AM; Gavilanes F; Albar JP; Ferragut JA; Gonzalez-Ros JM
    Biophys J; 1996 Sep; 71(3):1313-23. PubMed ID: 8874005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.
    Nyström JH; Lönnfors M; Nyholm TK
    Biophys J; 2010 Jul; 99(2):526-33. PubMed ID: 20643071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-dependent self-association of influenza hemagglutinin fusion peptides in lipid bilayers.
    Han X; Tamm LK
    J Mol Biol; 2000 Dec; 304(5):953-65. PubMed ID: 11124039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers.
    Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G
    Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers.
    Huang J; Feigenson GW
    Biophys J; 1999 Apr; 76(4):2142-57. PubMed ID: 10096908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.