These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14657607)

  • 1. Role of K(+) channels in frequency regulation of spontaneous action potentials in rat pituitary GH(3) cells.
    Lee SH; Lee EH; Ryu SY; Rhim H; Baek HJ; Lim W; Ho WK
    Neuroendocrinology; 2003 Nov; 78(5):260-9. PubMed ID: 14657607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERG K+ currents regulate pacemaker activity in ICC.
    Zhu Y; Golden CM; Ye J; Wang XY; Akbarali HI; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1249-58. PubMed ID: 12958021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Ca(2+) signaling by K(+) channels in a hypothalamic neuronal cell line (GT1-1).
    Costantin JL; Charles AC
    J Neurophysiol; 2001 Jan; 85(1):295-304. PubMed ID: 11152729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms underlying TRH-induced prolactin secretion in rat lactotrophs.
    Schwarz JR; Bauer CK
    Ross Fiziol Zh Im I M Sechenova; 1999 Jan; 85(1):195-204. PubMed ID: 10389176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inward-rectifying K+ current in clonal rat pituitary cells and its modulation by thyrotrophin-releasing hormone.
    Bauer CK; Meyerhof W; Schwarz JR
    J Physiol; 1990 Oct; 429():169-89. PubMed ID: 2126040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of inhibition by risperidone of the inwardly rectifying K(+) current in pituitary GH(3) cells.
    Wu SN; Jan CR; Li HF; Chiang HT
    Neuropsychopharmacology; 2000 Dec; 23(6):676-89. PubMed ID: 11063923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ.
    Kulik A; Brockhaus J; Pedarzani P; Ballanyi K
    Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells.
    Barros F; del Camino D; Pardo LA; Palomero T; Giráldez T; de la Peña P
    Pflugers Arch; 1997 Dec; 435(1):119-29. PubMed ID: 9359911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrabutylammonium: a selective blocker of the somatostatin-activated hyperpolarizing current in mouse AtT-20 corticotrophs.
    Thomas P; Smith PA
    Pflugers Arch; 2001 Mar; 441(6):816-23. PubMed ID: 11316266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanism of isoflurane's actions on thalamocortical neurons.
    Ries CR; Puil E
    J Neurophysiol; 1999 Apr; 81(4):1802-9. PubMed ID: 10200214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional role of the erg-like inward-rectifying K+ current in prolactin secretion from rat lactotrophs.
    Bauer CK; Schäfer R; Schiemann D; Reid G; Hanganu I; Schwarz JR
    Mol Cell Endocrinol; 1999 Feb; 148(1-2):37-45. PubMed ID: 10221769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones.
    Lancaster B; Batchelor AM
    J Physiol; 2000 Jan; 522 Pt 2(Pt 2):231-46. PubMed ID: 10639100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of K+ channel blockers on inwardly and outwardly rectifying whole-cell K+ currents in sheep parotid secretory cells.
    Ishikawa T; Cook DI
    J Membr Biol; 1993 Apr; 133(1):29-41. PubMed ID: 7686578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The erg inwardly rectifying K+ current and its modulation by thyrotrophin-releasing hormone in giant clonal rat anterior pituitary cells.
    Bauer CK
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):63-70. PubMed ID: 9625867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP.
    Mei YA; Vaudry D; Basille M; Castel H; Fournier A; Vaudry H; Gonzalez BJ
    Eur J Neurosci; 2004 Mar; 19(6):1446-58. PubMed ID: 15066141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel blockers have minimal effect on repolarization of spontaneous action potentials in rat pituitary lactotropes.
    Sankaranarayanan S; Simasko SM
    Neuroendocrinology; 1998 Nov; 68(5):297-311. PubMed ID: 9822797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of K+ channel blockers on K+ channels, membrane potential, and aldosterone secretion in rat adrenal zona glomerulosa cells.
    Lotshaw DP
    Endocrinology; 1997 Oct; 138(10):4167-75. PubMed ID: 9322926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle.
    Imai T; Okamoto T; Yamamoto Y; Tanaka H; Koike K; Shigenobu K; Tanaka Y
    Acta Physiol Scand; 2001 Nov; 173(3):323-33. PubMed ID: 11736694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.