These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 14658503)
41. Susceptibility of a field-derived, Bacillus thuringiensis-resistant strain of diamondback moth to in vitro-activated Cry1Ac toxin. Sayyed AH; Gatsi R; Kouskoura T; Wright DJ; Crickmore N Appl Environ Microbiol; 2001 Sep; 67(9):4372-3. PubMed ID: 11526050 [TBL] [Abstract][Full Text] [Related]
42. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India. Mohan M; Gujar GT Bull Entomol Res; 2002 Dec; 92(6):489-98. PubMed ID: 17598300 [TBL] [Abstract][Full Text] [Related]
43. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. Johnson DE; Brookhart GL; Kramer KJ; Barnett BD; McGaughey WH J Invertebr Pathol; 1990 Mar; 55(2):235-44. PubMed ID: 2181026 [TBL] [Abstract][Full Text] [Related]
44. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Jurat-Fuentes JL; Gahan LJ; Gould FL; Heckel DG; Adang MJ Biochemistry; 2004 Nov; 43(44):14299-305. PubMed ID: 15518581 [TBL] [Abstract][Full Text] [Related]
45. Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Lei Y; Zhu X; Xie W; Wu Q; Wang S; Guo Z; Xu B; Li X; Zhou X; Zhang Y Gene; 2014 Jan; 533(1):180-7. PubMed ID: 24120626 [TBL] [Abstract][Full Text] [Related]
46. Minimizing IP issues associated with gene constructs encoding the Bt toxin - a case study. Hassan MM; Tenazas F; Williams A; Chiu JW; Robin C; Russell DA; Golz JF BMC Biotechnol; 2024 Jun; 24(1):37. PubMed ID: 38825715 [TBL] [Abstract][Full Text] [Related]
47. Analyses of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Siqueira HA; González-Cabrera J; Ferré J; Flannagan R; Siegfried BD Appl Environ Microbiol; 2006 Aug; 72(8):5318-24. PubMed ID: 16885282 [TBL] [Abstract][Full Text] [Related]
48. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. Jurat-Fuentes JL; Adang MJ J Invertebr Pathol; 2007 Jul; 95(3):187-91. PubMed ID: 17467006 [TBL] [Abstract][Full Text] [Related]
49. Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Stevens T; Song S; Bruning JB; Choo A; Baxter SW Insect Biochem Mol Biol; 2017 Jan; 80():61-70. PubMed ID: 27914919 [TBL] [Abstract][Full Text] [Related]
50. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Sayyed AH; Crickmore N; Wright DJ Appl Environ Microbiol; 2001 Dec; 67(12):5859-61. PubMed ID: 11722947 [TBL] [Abstract][Full Text] [Related]
51. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Van Rie J; Jansens S; Höfte H; Degheele D; Van Mellaert H Eur J Biochem; 1989 Dec; 186(1-2):239-47. PubMed ID: 2557209 [TBL] [Abstract][Full Text] [Related]
52. Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera. Abdul-Rauf M; Ellar DJ J Invertebr Pathol; 1999 Jan; 73(1):52-8. PubMed ID: 9878290 [TBL] [Abstract][Full Text] [Related]
53. Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry2Ab. Luo S; Wu K; Tian Y; Liang G; Feng X; Zhang J; Guo Y J Econ Entomol; 2007 Jun; 100(3):909-15. PubMed ID: 17598555 [TBL] [Abstract][Full Text] [Related]
54. Binding properties of Bacillus thuringiensis Cry1C delta-endotoxin to the midgut epithelial membranes of Culex pipiens. Kamauchi S; Yamagiwa M; Esaki M; Otake K; Sakai H Biosci Biotechnol Biochem; 2003 Jan; 67(1):94-9. PubMed ID: 12619679 [TBL] [Abstract][Full Text] [Related]
55. Role of bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Ballester V; Granero F; de Maagd RA ; Bosch D; Mensua JL; Ferre J Appl Environ Microbiol; 1999 May; 65(5):1900-3. PubMed ID: 10223976 [TBL] [Abstract][Full Text] [Related]
56. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins. Valaitis AP; Podgwaite JD J Invertebr Pathol; 2013 Jan; 112(1):1-8. PubMed ID: 23108174 [TBL] [Abstract][Full Text] [Related]
57. Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth. Liu Y; Tabashnik BE Appl Environ Microbiol; 1997 Jun; 63(6):2218-23. PubMed ID: 16535623 [TBL] [Abstract][Full Text] [Related]
58. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Oppert B; Kramer KJ; Johnson DE; MacIntosh SC; McGaughey WH Biochem Biophys Res Commun; 1994 Feb; 198(3):940-7. PubMed ID: 8117300 [TBL] [Abstract][Full Text] [Related]
59. Bacillus thuringiensis crystal proteins CRY1Ab and CRY1Fa share a high affinity binding site in Plutella xylostella (L.). Granero F; Ballester V; Ferré J Biochem Biophys Res Commun; 1996 Jul; 224(3):779-83. PubMed ID: 8713122 [TBL] [Abstract][Full Text] [Related]
60. Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella). Liu YB; Tabashnik BE; Moar WJ; Smith RA Appl Environ Microbiol; 1998 Apr; 64(4):1385-9. PubMed ID: 16349543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]