These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 14658655)

  • 21. [Study on the vibrational spectra characters of Taiwan blue chalcedony].
    Chen QL; Yuan XQ; Jia L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1549-51. PubMed ID: 21847931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study.
    Malard LM; Moreira RL; Elias DC; Plentz F; Alves ES; Pimenta MA
    J Phys Condens Matter; 2010 Aug; 22(33):334202. PubMed ID: 21386492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of myosin and its proteolytic fragments by laser Raman spectroscopy.
    Carew EB; Stanley HE; Seidel JC; Gergely J
    Biophys J; 1983 Nov; 44(2):219-24. PubMed ID: 6360227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stokes mode Raman random lasing in a fully biocompatible medium.
    Gummaluri VS; Krishnan SR; Vijayan C
    Opt Lett; 2018 Dec; 43(23):5865-5868. PubMed ID: 30499961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.
    Pasteris JD; Wopenka B
    Astrobiology; 2003; 3(4):727-38. PubMed ID: 14987478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan).
    Korsakov AV; Hutsebaut D; Theunissen K; Vandenabeele P; Stepanov AS
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1046-52. PubMed ID: 17553735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman study of laser-induced heating effects in free-standing silicon nanocrystals.
    Han L; Zeman M; Smets AH
    Nanoscale; 2015 May; 7(18):8389-97. PubMed ID: 25805442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching.
    Kopitkovas G; Deckert V; Lippert T; Raimondi F; Schneider CW; Wokaun A
    Phys Chem Chem Phys; 2008 Jun; 10(22):3195-202. PubMed ID: 18500395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of Raman spectra in ocular drugs for potential in vivo application of Raman spectroscopy.
    Elshout M; Erckens RJ; Webers CA; Beckers HJ; Berendschot TT; de Brabander J; Hendrikse F; Schouten JS
    J Ocul Pharmacol Ther; 2011 Oct; 27(5):445-51. PubMed ID: 21767140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raman spectral imaging of single living cancer cells: a preliminary study.
    Draux F; Jeannesson P; Beljebbar A; Tfayli A; Fourre N; Manfait M; Sulé-Suso J; Sockalingum GD
    Analyst; 2009 Mar; 134(3):542-8. PubMed ID: 19238292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser induced fluorescence bands in the FT-Raman spectra of bioceramics.
    Aminzadeh A; Meskinfam M; Tayyary SF
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jan; 66(1):199-201. PubMed ID: 16829177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-jump apparatus with Raman detection based on a solid-state tunable (1.80-2.05 microm) kHz optical parametric oscillator laser.
    Balakrishnan G; Hu Y; Spiro TG
    Appl Spectrosc; 2006 Apr; 60(4):347-51. PubMed ID: 16613628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse.
    Misra AK; Sharma SK; Lucey PG
    Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal probing in single microparticle and microfiber induced near-field laser focusing.
    Tang X; Xu S; Wang X
    Opt Express; 2013 Jun; 21(12):14303-15. PubMed ID: 23787619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light.
    Puppels GJ; Olminkhof JH; Segers-Nolten GM; Otto C; de Mul FF; Greve J
    Exp Cell Res; 1991 Aug; 195(2):361-7. PubMed ID: 2070819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale probing of thermal, stress, and optical fields under near-field laser heating.
    Tang X; Xu S; Wang X
    PLoS One; 2013; 8(3):e58030. PubMed ID: 23555566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A flow cytometer for the measurement of Raman spectra.
    Watson DA; Brown LO; Gaskill DF; Naivar M; Graves SW; Doorn SK; Nolan JP
    Cytometry A; 2008 Feb; 73(2):119-28. PubMed ID: 18189283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.