These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 14658707)
1. Temporal and spatial evolution of a laser-induced plasma from a steel target. Corsi M; Cristoforetti G; Hidalgo M; Iriarte D; Legnaioli S; Palleschi V; Salvetti A; Tognoni E Appl Spectrosc; 2003 Jun; 57(6):715-21. PubMed ID: 14658707 [TBL] [Abstract][Full Text] [Related]
2. Identification and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy. Orzi DJ; Bilmes GM Appl Spectrosc; 2004 Dec; 58(12):1475-80. PubMed ID: 15606962 [TBL] [Abstract][Full Text] [Related]
3. Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat top lasers. Mateo MP; Cabalín LM; Laserna JJ Appl Spectrosc; 2003 Mar; 57(3):343-8. PubMed ID: 14658628 [TBL] [Abstract][Full Text] [Related]
4. [Spectroscopic study on the time evolution behaviors of the laser-induced air plasma]. Lin ZX; Li XY; Cheng XW; Li FQ; Gong SS Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):421-5. PubMed ID: 12953504 [TBL] [Abstract][Full Text] [Related]
5. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres. Gornushkin IB; Stevenson CL; Galbács G; Smith BW; Winefordner JD Appl Spectrosc; 2003 Nov; 57(11):1442-50. PubMed ID: 14658160 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process. Wang ZZ; Deguchi Y; Kuwahara M; Yan JJ; Liu JP Appl Spectrosc; 2013 Nov; 67(11):1242-51. PubMed ID: 24160875 [TBL] [Abstract][Full Text] [Related]
7. Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features. Corsi M; Cristoforetti G; Hidalgo M; Iriarte D; Legnaioli S; Palleschi V; Salvetti A; Tognoni E Appl Spectrosc; 2005 Jul; 59(7):853-60. PubMed ID: 16053554 [TBL] [Abstract][Full Text] [Related]
8. Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation. Chen Y; Bulatov V; Singer L; Stricker J; Schechter I Anal Bioanal Chem; 2005 Dec; 383(7-8):1090-7. PubMed ID: 16283266 [TBL] [Abstract][Full Text] [Related]
9. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma. Tsuyuki K; Miura S; Idris N; Kurniawan KH; Lie TJ; Kagawa K Appl Spectrosc; 2006 Jan; 60(1):61-4. PubMed ID: 16454913 [TBL] [Abstract][Full Text] [Related]
10. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry. Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure. García MC; Yubero C; Calzada MD; Martínez-Jiménez MP Appl Spectrosc; 2005 Apr; 59(4):519-28. PubMed ID: 15901338 [TBL] [Abstract][Full Text] [Related]
12. Chemometric approach to laser-induced breakdown analysis of gold alloys. Jurado-López A; Luque de Castro MD Appl Spectrosc; 2003 Mar; 57(3):349-52. PubMed ID: 14658629 [No Abstract] [Full Text] [Related]
13. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy. Guo LB; Hao ZQ; Shen M; Xiong W; He XN; Xie ZQ; Gao M; Li XY; Zeng XY; Lu YF Opt Express; 2013 Jul; 21(15):18188-95. PubMed ID: 23938689 [TBL] [Abstract][Full Text] [Related]
14. [Effects of gas composition and pressure on the intensity and quality of the plasma induced by a high-energy neodymium glass laser]. Chen JZ; Zhao SR; Wei YH; Guo QL; Huai SF Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar; 25(3):341-5. PubMed ID: 16013302 [TBL] [Abstract][Full Text] [Related]
15. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation. Guo LB; Zhang BY; He XN; Li CM; Zhou YS; Wu T; Park JB; Zeng XY; Lu YF Opt Express; 2012 Jan; 20(2):1436-43. PubMed ID: 22274487 [TBL] [Abstract][Full Text] [Related]
16. Absorption spectroscopy: technique provides extremely high sensitivity. Provencal RA; Paul JB; Michael E; Saykally RJ Photonics Spectra; 1998 Jun; 32(6):159-66. PubMed ID: 11541906 [TBL] [Abstract][Full Text] [Related]
17. Laser diagnostics of welding plasma by polarization spectroscopy. Lucas O; Alwahabi ZT; Linton V; Meeuwissen K Appl Spectrosc; 2007 May; 61(5):565-9. PubMed ID: 17555627 [TBL] [Abstract][Full Text] [Related]
18. Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy. Scaffidi J; Pearman W; Carter JC; Angel SM Appl Spectrosc; 2006 Jan; 60(1):65-71. PubMed ID: 16454914 [TBL] [Abstract][Full Text] [Related]
19. Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy. Labutin TA; Zaytsev SM; Popov AM; Zorov NB Opt Express; 2014 Sep; 22(19):22382-7. PubMed ID: 25321709 [TBL] [Abstract][Full Text] [Related]
20. Applications of absorption spectroscopy using quantum cascade lasers. Zhang L; Tian G; Li J; Yu B Appl Spectrosc; 2014; 68(10):1095-107. PubMed ID: 25239063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]