BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14659368)

  • 1. Sublethal soil copper concentrations increase mortality in the earthworm Aporrectodea caliginosa during drought.
    Friis K; Damgaard C; Holmstrup M
    Ecotoxicol Environ Saf; 2004 Jan; 57(1):65-73. PubMed ID: 14659368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in sensitivity between earthworms and enchytraeids exposed to two commercial fungicides.
    Bart S; Laurent C; Péry AR; Mougin C; Pelosi C
    Ecotoxicol Environ Saf; 2017 Jun; 140():177-184. PubMed ID: 28260682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic changes during estivation in the common earthworm Aporrectodea caliginosa.
    Bayley M; Overgaard J; Høj AS; Malmendal A; Nielsen NC; Holmstrup M; Wang T
    Physiol Biochem Zool; 2010; 83(3):541-50. PubMed ID: 20367318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability.
    Mirmonsef H; Hornum HD; Jensen J; Holmstrup M
    Ecotoxicol Environ Saf; 2017 Jan; 135():267-275. PubMed ID: 27750094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking lysosomal biomarker and population responses in a field population of Aporrectodea caliginosa (Oligochaeta) exposed to the fungicide copper oxychloride.
    Maboeta MS; Reinecke SA; Reinecke AJ
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):411-8. PubMed ID: 14575681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?
    Klobučar GI; Stambuk A; Srut M; Husnjak I; Merkaš M; Traven L; Cvetković Z
    Environ Pollut; 2011 Apr; 159(4):841-9. PubMed ID: 21292364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil.
    Bart S; Barraud A; Amossé J; Péry ARR; Mougin C; Pelosi C
    Ecotoxicol Environ Saf; 2019 Oct; 181():518-524. PubMed ID: 31234066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthworms accumulate alanine in response to drought.
    Holmstrup M; Slotsbo S; Henriksen PG; Bayley M
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep; 199():8-13. PubMed ID: 27107492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential ecotoxicological effects of silver nanoparticles and silver sulphide on the endogeic earthworm Aporrectodea caliginosa (Savigny 1826).
    Kister JM; Lowe CN; Butt KR
    Ecotoxicology; 2023 Nov; 32(9):1152-1161. PubMed ID: 37861860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the toxicity of herbicide isoproturon on Aporrectodea caliginosa (Oligochaeta) and its fate in soil ecosystem.
    Mosleh YY
    Environ Toxicol; 2009 Aug; 24(4):396-403. PubMed ID: 18825701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa).
    Dittbrenner N; Triebskorn R; Moser I; Capowiez Y
    Ecotoxicology; 2010 Nov; 19(8):1567-73. PubMed ID: 20821048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing.
    Tatsi K; Shaw BJ; Hutchinson TH; Handy RD
    Ecotoxicol Environ Saf; 2018 Dec; 166():462-473. PubMed ID: 30296611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of ionophore monensin on performance and Cu uptake in earthworm Eisenia andrei exposed to copper-contaminated soil.
    Zidar P; Kos M; Vogel-Mikuš K; van Elteren JT; Debeljak M; Žižek S
    Chemosphere; 2016 Oct; 161():119-126. PubMed ID: 27424053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of pH on Cu accumulation kinetics in earthworm cytosol.
    Vijver MG; Koster M; Peijnenburg WJ
    Environ Sci Technol; 2007 Apr; 41(7):2255-60. PubMed ID: 17438772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa.
    Steenbergen NT; Iaccino F; de Winkel M; Reijnders L; Peijnenburg WJ
    Environ Sci Technol; 2005 Aug; 39(15):5694-702. PubMed ID: 16124304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two years field experiment to assess the impact of two fungicides on earthworm communities and their recovery.
    Amossé J; Bart S; Brulle F; Tebby C; Beaudouin R; Nélieu S; Lamy I; Péry ARR; Pelosi C
    Ecotoxicol Environ Saf; 2020 Oct; 203():110979. PubMed ID: 32678758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives.
    Leduc F; Whalen JK; Sunahara GI
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):219-26. PubMed ID: 17559932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined subacute toxicity of copper and antiparasitic albendazole to the earthworm (Eisenia fetida).
    Gao Y; Li H; Li X; Sun Z
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4387-96. PubMed ID: 26780053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.