These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 14659575)

  • 21. Divergent effects of age on performance in spatial associative learning and real idiothetic memory in humans.
    Skolimowska J; Wesierska M; Lewandowska M; Szymaszek A; Szelag E
    Behav Brain Res; 2011 Mar; 218(1):87-93. PubMed ID: 21108974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct roles of medial and lateral entorhinal cortex in spatial cognition.
    Van Cauter T; Camon J; Alvernhe A; Elduayen C; Sargolini F; Save E
    Cereb Cortex; 2013 Feb; 23(2):451-9. PubMed ID: 22357665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
    Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S
    Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resetting the path integrator: a basic condition for route-based navigation.
    Etienne AS; Maurer R; Boulens V; Levy A; Rowe T
    J Exp Biol; 2004 Apr; 207(Pt 9):1491-508. PubMed ID: 15037644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Idiothetic signal processing and spatial orientation in patients with unilateral hippocampal sclerosis.
    Anagnostou E; Skarlatou V; Mergner T; Anastasopoulos D
    J Neurophysiol; 2018 Sep; 120(3):1256-1263. PubMed ID: 29897863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task.
    Cánovas R; García RF; Cimadevilla JM
    Behav Brain Res; 2011 Jan; 216(1):116-21. PubMed ID: 20655953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
    Demichelis A; Olivier G; Berthoz A
    Exp Brain Res; 2013 Feb; 224(4):605-11. PubMed ID: 23223779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The place preference task: a new tool for studying the relation between behavior and place cell activity in rats.
    Rossier J; Kaminsky Y; Schenk F; Bures J
    Behav Neurosci; 2000 Apr; 114(2):273-84. PubMed ID: 10832789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unidirectional influence of vision on locomotion in multimodal spatial representations acquired from navigation.
    Du Y; Mou W; Zhang L
    Psychol Res; 2020 Jul; 84(5):1284-1303. PubMed ID: 30542972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel apparatus for assessing visual cue-based navigation in rodents.
    Lester AW; Kapellusch AJ; Barnes CA
    J Neurosci Methods; 2020 May; 338():108667. PubMed ID: 32169584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short-distance navigation in cephalopods: a review and synthesis.
    Alves C; Boal JG; Dickel L
    Cogn Process; 2008 Dec; 9(4):239-47. PubMed ID: 17932698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The retrosplenial cortex is necessary for path integration in the dark.
    Elduayen C; Save E
    Behav Brain Res; 2014 Oct; 272():303-7. PubMed ID: 25026093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats.
    Whishaw IQ; Mittleman G; Bunch ST; Dunnett SB
    Behav Brain Res; 1987 May; 24(2):125-38. PubMed ID: 3593524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential control of navigation by locale and taxon cues in the Morris water task.
    Hamilton DA; Rosenfelt CS; Whishaw IQ
    Behav Brain Res; 2004 Oct; 154(2):385-97. PubMed ID: 15313026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What is geometric information and how do animals use it?
    Sutton JE
    Behav Processes; 2009 Mar; 80(3):339-43. PubMed ID: 19084055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information.
    Avni R; Zadicario P; Eilam D
    Behav Brain Res; 2006 Aug; 171(2):313-23. PubMed ID: 16712970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Neurobiology of Mammalian Navigation.
    Poulter S; Hartley T; Lever C
    Curr Biol; 2018 Sep; 28(17):R1023-R1042. PubMed ID: 30205053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solving for two unknowns: an extension of vector-based models of landmark-based navigation.
    Sturz BR; Cooke SP; Bodily KD
    J Exp Psychol Anim Behav Process; 2011 Jul; 37(3):368-74. PubMed ID: 21744982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representational neglect and navigation in real space.
    Guariglia C; Piccardi L; Iaria G; Nico D; Pizzamiglio L
    Neuropsychologia; 2005; 43(8):1138-43. PubMed ID: 15817171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.