These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 14659594)

  • 1. Biodemographic trajectories of age-specific reproliferation from stationary phase in the yeast Saccharomyces cerevisiae seem multiphasic.
    Gendron CM; Minois N; Fabrizio P; Longo VD; Pletcher SD; Vaupel JW
    Mech Ageing Dev; 2003 Dec; 124(10-12):1059-63. PubMed ID: 14659594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of death rates in stationary phase in Saccharomyces cerevisiae.
    Minois N; Lagona F; Frajnt M; Vaupel JW
    Aging Cell; 2009 Feb; 8(1):36-44. PubMed ID: 19053971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary phase in Saccharomyces cerevisiae.
    Werner-Washburne M; Braun EL; Crawford ME; Peck VM
    Mol Microbiol; 1996 Mar; 19(6):1159-66. PubMed ID: 8730858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures.
    Werner-Washburne M; Roy S; Davidson GS
    Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
    Gershon H; Gershon D
    Mech Ageing Dev; 2000 Dec; 120(1-3):1-22. PubMed ID: 11087900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: to bud until death: the genetics of ageing in the yeast, Saccharomyces.
    Austriaco NR
    Yeast; 1996 Jun; 12(7):623-30. PubMed ID: 8810036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression.
    Meunier JR; Choder M
    Yeast; 1999 Sep; 15(12):1159-69. PubMed ID: 10487919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.
    Martinez MJ; Roy S; Archuletta AB; Wentzell PD; Anna-Arriola SS; Rodriguez AL; Aragon AD; Quiñones GA; Allen C; Werner-Washburne M
    Mol Biol Cell; 2004 Dec; 15(12):5295-305. PubMed ID: 15456898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance.
    Michel S; Keller MA; Wamelink MM; Ralser M
    BMC Genet; 2015 Feb; 16():13. PubMed ID: 25887987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae.
    Ashrafi K; Sinclair D; Gordon JI; Guarente L
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9100-5. PubMed ID: 10430902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic assessment of stationary phase for cells of the yeast Saccharomyces cerevisiae.
    Drebot MA; Barnes CA; Singer RA; Johnston GC
    J Bacteriol; 1990 Jul; 172(7):3584-9. PubMed ID: 2163381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clonal heterogeneity in specific growth rate of Saccharomyces cerevisiae cells.
    Wheals AE; Lord PG
    Cell Prolif; 1992 May; 25(3):217-23. PubMed ID: 1596534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses.
    Park JI; Grant CM; Dawes IW
    Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.
    Nussbaum I; Weindling E; Jubran R; Cohen A; Bar-Nun S
    PLoS One; 2014; 9(10):e111505. PubMed ID: 25356557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span.
    Vasicova P; Lejskova R; Malcova I; Hasek J
    Mol Cell Biol; 2015 Nov; 35(22):3892-908. PubMed ID: 26351139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replicative aging of the yeast does not require DNA replication.
    Zadrag R; Bartosz G; Bilinski T
    Biochem Biophys Res Commun; 2005 Jul; 333(1):138-41. PubMed ID: 15939403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the mismatch-repair system on stationary-phase mutagenesis in the yeast Saccharomyces cerevisiae.
    Hałas A; Baranowska H; Policińska Z
    Curr Genet; 2002 Dec; 42(3):140-6. PubMed ID: 12491007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Toolbox for Rapid Quantitative Assessment of Chronological Lifespan and Survival in Saccharomyces cerevisiae.
    Chadwick SR; Pananos AD; Di Gregorio SE; Park AE; Etedali-Zadeh P; Duennwald ML; Lajoie P
    Traffic; 2016 Jun; 17(6):689-703. PubMed ID: 26939796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron stimulates yeast (Saccharomyces cerevisiae) growth.
    Bennett A; Rowe RI; Soch N; Eckhert CD
    J Nutr; 1999 Dec; 129(12):2236-8. PubMed ID: 10573556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining magnetic sorting of mother cells and fluctuation tests to analyze genome instability during mitotic cell aging in Saccharomyces cerevisiae.
    Patterson MN; Maxwell PH
    J Vis Exp; 2014 Oct; (92):e51850. PubMed ID: 25350605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.