These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14659831)

  • 1. A state-dependent trigger for electrophysiological recording at predetermined membrane potentials.
    Reynolds JN; Wickens JR
    J Neurosci Methods; 2003 Dec; 131(1-2):111-9. PubMed ID: 14659831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography.
    Gilad O; Ghosh A; Oh D; Holder DS
    J Neurosci Methods; 2009 May; 180(1):87-96. PubMed ID: 19427534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials.
    Sutor B; Grimm C; Polder HR
    Pflugers Arch; 2003 Apr; 446(1):133-41. PubMed ID: 12690472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and inexpensive device for applying a calibration pulse when performing intracellular recording.
    Godfraind JM; Veraart C; Nicaise M
    J Neurosci Methods; 1984 May; 11(1):61-3. PubMed ID: 6088900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation.
    Nakanishi H; Kita H; Kitai ST
    Brain Res; 1987 Dec; 437(1):35-44. PubMed ID: 3427481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures.
    Baranyi A; Szente MB; Woody CD
    J Neurophysiol; 1993 Jun; 69(6):1865-79. PubMed ID: 8350127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological and morphological properties of interneurones in the rat dorsal lateral geniculate nucleus in vitro.
    Williams SR; Turner JP; Anderson CM; Crunelli V
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):129-47. PubMed ID: 8745283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.
    Kim YI; Dudek FE
    J Physiol; 1993 May; 464():229-43. PubMed ID: 8229799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID
    J Neurosci Methods; 1991 Dec; 40(2-3):181-91. PubMed ID: 1800855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Miniature preamplifier for recording the potentials of nerve cells].
    Gabisoniia AG; Okudzhava VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(4):788-90. PubMed ID: 4050120
    [No Abstract]   [Full Text] [Related]  

  • 12. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a single electrode voltage clamp.
    Merickel M
    J Neurosci Methods; 1980 Feb; 2(1):87-96. PubMed ID: 7329092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments.
    Raikov I; Preyer A; Butera RJ
    J Neurosci Methods; 2004 Jan; 132(2):109-23. PubMed ID: 14706709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--3. Evidence for electrotonic coupling.
    Grace AA; Bunney BS
    Neuroscience; 1983 Oct; 10(2):333-48. PubMed ID: 6633865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inexpensive electronic switch for preventing amplifier overload in neurophysiological recording.
    Yeandle S
    Brain Res Bull; 1980; 5(6):765-7. PubMed ID: 7470945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductance injection.
    Robinson HP
    Trends Neurosci; 1994 Apr; 17(4):147-8. PubMed ID: 7517591
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrophysiology of regular firing cells in the rat perirhinal cortex.
    D'Antuono M; Biagini G; Tancredi V; Avoli M
    Hippocampus; 2001; 11(6):662-72. PubMed ID: 11811660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study.
    Jahnsen H; LlinĂ¡s R
    J Physiol; 1984 Apr; 349():205-26. PubMed ID: 6737292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.