These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 14660561)
1. Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle. Ward CW; Feng W; Tu J; Pessah IN; Worley PK; Schneider MF J Biol Chem; 2004 Feb; 279(7):5781-7. PubMed ID: 14660561 [TBL] [Abstract][Full Text] [Related]
2. Homer regulates gain of ryanodine receptor type 1 channel complex. Feng W; Tu J; Yang T; Vernon PS; Allen PD; Worley PF; Pessah IN J Biol Chem; 2002 Nov; 277(47):44722-30. PubMed ID: 12223488 [TBL] [Abstract][Full Text] [Related]
3. Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Salanova M; Priori G; Barone V; Intravaia E; Flucher B; Ciruela F; McIlhinney RA; Parys JB; Mikoshiba K; Sorrentino V Cell Calcium; 2002 Oct; 32(4):193-200. PubMed ID: 12379179 [TBL] [Abstract][Full Text] [Related]
4. Homer and the ryanodine receptor. Pouliquin P; Dulhunty AF Eur Biophys J; 2009 Dec; 39(1):91-102. PubMed ID: 19513708 [TBL] [Abstract][Full Text] [Related]
5. Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle. Shtifman A; Ward CW; Yamamoto T; Wang J; Olbinski B; Valdivia HH; Ikemoto N; Schneider MF J Gen Physiol; 2002 Jan; 119(1):15-32. PubMed ID: 11773235 [TBL] [Abstract][Full Text] [Related]
6. Dynamic regulation of ryanodine receptor type 1 (RyR1) channel activity by Homer 1. Feng W; Tu J; Pouliquin P; Cabrales E; Shen X; Dulhunty A; Worley PF; Allen PD; Pessah IN Cell Calcium; 2008 Mar; 43(3):307-14. PubMed ID: 17707505 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the Homer1 EVH1 domain and skeletal muscle ryanodine receptor. Wang T; Zhang L; Shi C; Wei R; Yin C Biochem Biophys Res Commun; 2019 Jun; 514(3):720-725. PubMed ID: 31078268 [TBL] [Abstract][Full Text] [Related]
8. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970 [TBL] [Abstract][Full Text] [Related]
9. Peptide and protein modulation of local Ca2+ release events in permeabilized skeletal muscle fibers. Schneider MF; Rodney GG Biol Res; 2004; 37(4):613-6. PubMed ID: 15709689 [TBL] [Abstract][Full Text] [Related]
10. Initiation and termination of calcium sparks in skeletal muscle. Schneider MF; Ward CW Front Biosci; 2002 May; 7():d1212-22. PubMed ID: 11991854 [TBL] [Abstract][Full Text] [Related]
17. A repetitive mode of activation of discrete Ca2+ release events (Ca2+ sparks) in frog skeletal muscle fibres. Klein MG; Lacampagne A; Schneider MF J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):391-411. PubMed ID: 10050007 [TBL] [Abstract][Full Text] [Related]
18. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. Sheehan KA; Zima AV; Blatter LA J Physiol; 2006 May; 572(Pt 3):799-809. PubMed ID: 16484302 [TBL] [Abstract][Full Text] [Related]
19. Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Hwang SY; Wei J; Westhoff JH; Duncan RS; Ozawa F; Volpe P; Inokuchi K; Koulen P Cell Calcium; 2003 Aug; 34(2):177-84. PubMed ID: 12810060 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling? Zhou J; Launikonis BS; RĂos E; Brum G J Gen Physiol; 2004 Oct; 124(4):409-28. PubMed ID: 15452201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]