These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14660708)

  • 1. Dynamic interactions of excitatory and inhibitory inputs in hypoglossal motoneurones: respiratory phasing and modulation by PKA.
    Saywell SA; Feldman JL
    J Physiol; 2004 Feb; 554(Pt 3):879-89. PubMed ID: 14660708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of AMPA receptors by cAMP-dependent protein kinase in preBötzinger complex inspiratory neurons regulates respiratory rhythm in the rat.
    Shao XM; Ge Q; Feldman JL
    J Physiol; 2003 Mar; 547(Pt 2):543-53. PubMed ID: 12562968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic modulation of inspiratory drive currents by protein kinase A and protein phosphatases in functionally active motoneurons.
    Bocchiaro CM; Saywell SA; Feldman JL
    J Neurosci; 2003 Feb; 23(4):1099-103. PubMed ID: 12598595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase G-dependent mechanisms modulate hypoglossal motoneuronal excitability and long-term facilitation.
    Saywell SA; Babiec WE; Neverova NV; Feldman JL
    J Physiol; 2010 Nov; 588(Pt 22):4431-9. PubMed ID: 20855434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm.
    Shao XM; Feldman JL
    Neuroscience; 2005; 130(4):1069-81. PubMed ID: 15653001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyrotropin-releasing hormone causes a tonic excitatory postsynaptic current and inhibits the phasic inspiratory inhibitory inputs in inspiratory-inhibited airway vagal preganglionic neurons.
    Hou L; Zhou X; Chen Y; Qiu D; Zhu L; Wang J
    Neuroscience; 2012 Jan; 202():184-91. PubMed ID: 22198018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro.
    Yasuda K; Robinson DM; Selvaratnam SR; Walsh CW; McMorland AJ; Funk GD
    J Physiol; 2001 Jul; 534(Pt. 2):447-64. PubMed ID: 11454963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1993 Oct; 70(4):1497-515. PubMed ID: 8283211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noradrenergic modulation of XII motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the Ih current or presynaptic glutamate release.
    Adachi T; Robinson DM; Miles GB; Funk GD
    J Appl Physiol (1985); 2005 Apr; 98(4):1297-308. PubMed ID: 15579572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined antagonism of aminergic excitatory and amino acid inhibitory receptors in the XII nucleus abolishes REM sleep-like depression of hypoglossal motoneuronal activity.
    Fenik V; Davies RO; Kubin L
    Arch Ital Biol; 2004 May; 142(3):237-49. PubMed ID: 15260378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBötzinger complex inspiratory neurons.
    Shao XM; Feldman JL
    J Neurophysiol; 2000 Mar; 83(3):1243-52. PubMed ID: 10712452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory control of hypoglossal motoneurones in the rat.
    Peever JH; Mateika JH; Duffin J
    Pflugers Arch; 2001 Apr; 442(1):78-86. PubMed ID: 11374072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability.
    Parkis MA; Dong X; Feldman JL; Funk GD
    J Neurosci; 1999 Mar; 19(6):2368-80. PubMed ID: 10066287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent modulation of neonatal rat respiratory rhythm in vitro: cellular and synaptic mechanisms.
    Mellen NM; Roham M; Feldman JL
    J Physiol; 2004 May; 556(Pt 3):859-74. PubMed ID: 14766932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro.
    Pagnotta SE; Lape R; Quitadamo C; Nistri A
    Neuroscience; 2005; 130(3):783-95. PubMed ID: 15590160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotoninergic control of glycinergic inhibitory postsynaptic currents in rat hypoglossal motoneurons.
    Engelhardt JK; Silveira V; Morales FR; Pose I; Chase MH
    Brain Res; 2010 Jul; 1345():1-8. PubMed ID: 20460115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat.
    Burke PG; Sousa LO; Tallapragada VJ; Goodchild AK
    Eur J Neurosci; 2013 Jul; 38(2):2260-70. PubMed ID: 23627348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro.
    Alvares TS; Revill AL; Huxtable AG; Lorenz CD; Funk GD
    J Physiol; 2014 Jul; 592(14):3089-111. PubMed ID: 24879869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.