BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14661067)

  • 1. Brain capillary perfusion in the spontaneously hypertensive rat during the wake-sleep cycle.
    Silvani A; Bojic T; Cianci T; Franzini C; Lenzi P; Lucchi ML; Zoccoli G
    Exp Brain Res; 2004 Jan; 154(1):44-9. PubMed ID: 14661067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density of perfused brain capillaries in the aged rat during the wake-sleep cycle.
    Zoccoli G; Lucchi ML; Andreoli E; Lenzi P; Franzini C
    Exp Brain Res; 2000 Jan; 130(1):73-7. PubMed ID: 10638443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain capillary perfusion during sleep.
    Zoccoli G; Lucchi ML; Andreoli E; Bach V; Cianci T; Lenzi P; Franzini C
    J Cereb Blood Flow Metab; 1996 Nov; 16(6):1312-8. PubMed ID: 8898706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congruence of total and perfused capillary network in rat brains.
    Göbel U; Theilen H; Kuschinsky W
    Circ Res; 1990 Feb; 66(2):271-81. PubMed ID: 1688741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and baroreflex control of heart period during the wake-sleep cycle in consomic rats with different genetic susceptibility to hypertension.
    Silvani A; Bastianini S; Berteotti C; Franzini C; Lenzi P; Lo Martire V; Zoccoli G
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):322-7. PubMed ID: 19769608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary perfusion in the brain.
    Kuschinsky W
    Pflugers Arch; 1996; 432(3 Suppl):R42-6. PubMed ID: 8994541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain injury and cerebrovascular fibrin deposition correlate with reduced antithrombotic brain capillary functions in a hypertensive stroke model.
    Ninomia T; Wang L; Kumar SR; Kim A; Zlokovic BV
    J Cereb Blood Flow Metab; 2000 Jun; 20(6):998-1009. PubMed ID: 10894183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of the renin-angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats.
    Estato V; Obadia N; Carvalho-Tavares J; Freitas FS; Reis P; Castro-Faria Neto H; Lessa MA; Tibiriçá E
    Microvasc Res; 2013 May; 87():41-9. PubMed ID: 23466285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregulation of the cerebral circulation during sleep in newborn lambs.
    Grant DA; Franzini C; Wild J; Eede KJ; Walker AM
    J Physiol; 2005 May; 564(Pt 3):923-30. PubMed ID: 15760939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep-related brain activation does not increase the permeability of the blood-brain barrier to glucose.
    Silvani A; Asti V; Berteotti C; Bojic T; Cianci T; Ferrari V; Franzini C; Lenzi P; Zoccoli G
    J Cereb Blood Flow Metab; 2005 Aug; 25(8):990-7. PubMed ID: 15758946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular effects of nitric oxide manipulation in spontaneously hypertensive rats.
    Fouyas IP; Kelly PA; Ritchie IM; Whittle IR
    Br J Pharmacol; 1997 May; 121(1):49-56. PubMed ID: 9146886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The baroreflex contribution to spontaneous heart rhythm assessed with a mathematical model in rats.
    Berteotti C; Franzini C; Lenzi P; Magosso E; Ursino M; Zoccoli G; Silvani A
    Auton Neurosci; 2008 Feb; 138(1-2):24-30. PubMed ID: 17936694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles.
    Nakamaru-Ogiso E; Miyamoto H; Hamada K; Tsukada K; Takai K
    Eur J Neurosci; 2012 Jun; 35(11):1762-70. PubMed ID: 22625848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of morphometric indices of the total and perfused capillary network of the newborn pig brain.
    Anwar M; Weiss J; Weiss HR
    Pediatr Res; 1992 Nov; 32(5):542-6. PubMed ID: 1282699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary circulation in the brain.
    Kuschinsky W; Paulson OB
    Cerebrovasc Brain Metab Rev; 1992; 4(3):261-86. PubMed ID: 1389958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular effects of centrally acting antihypertensive drugs in spontaneously hypertensive rats.
    Nascimento AR; Lessa MA; Sabino B; Bousquet P; Tibiriçá E
    J Cardiovasc Pharmacol; 2010 Mar; 55(3):240-7. PubMed ID: 20040886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sympathetic Hyperactivity, Sleep Fragmentation, and Wake-Related Blood Pressure Surge During Late-Light Sleep in Spontaneously Hypertensive Rats.
    Lai CT; Chen CY; Kuo TB; Chern CM; Yang CC
    Am J Hypertens; 2016 May; 29(5):590-7. PubMed ID: 26350298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hypoxia on percent of arteriolar and capillary beds perfused in the rat brain.
    Francois-Dainville E; Buchweitz E; Weiss HR
    J Appl Physiol (1985); 1986 Jan; 60(1):280-8. PubMed ID: 3944037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [About evolution of sleep-wakefulness cycle in vertebrates].
    Oganesian GA; Aristakesian EA; Vataev SI
    Ross Fiziol Zh Im I M Sechenova; 2012 Oct; 98(10):1161-87. PubMed ID: 23401913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.